Status of the design and simulations for the FOFB of PETRA IV

An brief overview of the activities towards a stable beam orbit

Sven Pfeiffer for the PETRA III & IV team

Karlsruhe, 18.03.2025

Outline

- Introduction PETRA (III / IV)
- Stability task force
- System modelling and HW design
- Disturbance and noise model
- SISO simulation
- Conclusion

Courtesy: R.Bartolini

PETRA III is one of the core facilities at DESY

Each year ~5000h user operation serving more than 2000 users

Ada Yonath Hall Extension Hall East

Max von Laue Hall PETRA IV project: Paul P. Ewald Hall Extension Hall North

Parameter	PETRA III
Energy [GeV]	6
Circumference [m]	2304
Emittance (hor./vert.) [nm]	1.3 / 0.013
Total current [mA]	100

PETRA III emittance 1300 pm

PETRA IV emittance 20 pm

enabling 500 times larger X-ray beams brightness

replacing PETRA III with an ultra-low emittance ring (20 pm), adding a new Experimental Hall in two more octants & replacing DESY II with a new low emittance booster

FOFB system topology

Latency optimized topology

- 1 global orbit control unit (GOC)
 - Close to RF system / timing system
 - Short path from GOC to LOC in experimental halls
- 16 (15) distributed local controllers (LOC)
 - Collection of BPM information
 - Transmission of updated magnet current to power supplies
- Optical fiber communication links
 - Global to all local systems \rightarrow classical regulation (star topology)
 - Local to local system links
 - Integrating experiments based on photon diagnostics

Ring:	789 BPMs, 560 fast correctors, 2.3km
FOFB:	10% (5%, 3%) beam stability, DC to 1kHz

Stability task force

FOFB concept GOC, LOC, EXP blocks

Initial MIMO and SISO simulations

- Incoherent disturbances
- Focus on main system dynamics

Goal: Full implementation of the dynamic MIMO simulation

- PETRA III as benchmark facility
- Including coherence length
- Realistic dynamic errors and disturbances

Stability task force

- (I) Ground motion / disturbances
- (II) Girder/support amplification/eigenfrequencies
- (III) PS ripple, effect on beam
- (IV) Orbit measurement noise
- (V) Fast corrector power supply ripple

→ Passive and active orbit stability aspects

Disturbances

High horz. and long. amplification factor in range 7-10Hz

itg 150

ਸੂ ਗਿ100

Je 76

Inc. excitation bursts

Amplification: Floor to QA

SWR47

WR0

NR140

SWR133

FOFB: Stability task force @ PETRA III (N.Meyners et al.)

Ground motions

- **PETRA I** tunnel reused
- Ground settlements and seasonal motions_{r+00}
- Ocean waves (<1Hz)
- Traffic (1...10Hz)
- In-house noise (10...100Hz)
- Girder and amplification factor (< 48 Hz)

Additional sources / sinks

- Asynchronous motors (<50Hz) ٠
- Controlled motors/pumps (25Hz) ٠
- Power supply output ripple ($k \cdot 12.5Hz$) •
- Harmonics of DESY II (~30Hz) ٠
- ID gap movements (Hz depending on speed)
- Injection process (injection FF)

150

100

50

100

200

300

Measurement

System modelling and design

offset at a distance of 1m

PETRA IV FOFB

Corrector requirements from PIII to PIV

PETRA III

- Small corrector magnet (0.2mH...0.48mH) as air coil (kHz bandwidth) for fast orbit feedback; max 45µrad
- Larger magnet for static (DC) corrections
- Stainless steel vacuum chamber (D=94-98mm) with ~1kHz bandwidth as limiting element

PETRA IV \rightarrow Complete redesign by space constraints

- **Combined functioning magnet** (slow and fast corrections) with 23mH; max 560µrad DC, 30µrad AC
 - High field quality (less dependence on orbit fluctuations)
 - Hz bandwidth, pushed digitally into kHz regime → more demands on magnet power supply
 - (Possibility to integrate skew quad coils)

Slow and fast corrector magnet based on APS-U design

Courtesy: H.T.Duhme, J.Klute

[@]APS-U (courtesy: John Carwardine, Animesh Jain)

Magnet update

Yoke variations

- 1st prototype magnet with PowerCore 1400 and 1mm lamination thickness
 - 3kHz with -10deg.
- 2nd prototype magnet with PowerCore 1400 and 0.3mm lamination thickness
 - 30kHz with -10deg.

\rightarrow Fractional order system

$$G(s^{0.44}) = \frac{1}{0.0023 \cdot s^{0.44} + 1}$$

Simulation by TU Darmstadt (TEMF)

0.3mm laminations \rightarrow side project for master student

Technology

Vacuum chamber design

Magnet simulation with nearby quads and vacuum chamber

ITF_3MagnetsWithFlanges w/o lamination

Fractional Order Model

... for the fast correctors

- SS vacuum chamber with symmetric CU transitions •
- Thickness 0.5mm .
- Yoke-CU distance 29mm ٠

Disturbance and noise models

PIV - FOFB system

Disturbance integration - SISO

Disturbance

- **BPM** measurement at PETRA III •
- Incoherent: DC kHz •

0

20

40

60

100

120 Frequency [Hz] 140

160

180

200

220

Start with PIII disturbance model to check PIV system simulations → Reduced distortions at PIV expected by optimization of girder eigenfrequencies

→Talk: Normann Koldrack

Next steps:

Spatial disturbance integration into full ring simulation including coherence length and transition

- Coherent: < 1Hz (ocean waves)
- Transition: 1...10Hz (traffic noise)

BPM update

BPM electronics model

- BPM electronics
 - DDC bandwidth and I/O latency
 - Noise including switching sequence
- Noise characteristic for electronics
 - Measured at PIII with PIV system (09/2023)

Matching of integrated jitter

Simulations with or without BPM noise and the switching artefact for drift compensation

Working on an advanced noise characteristic, i.e. variation of

- Number of bunches
- Bunch repetition rate
- Fill pattern (1920b, 80b, 7/8, hybrid mode)
- Bunch charge (hybrid mode)

•••

.

PS update for fast correctors

Power supply noise using pulse width modulation

- Power supply
 - I/O delay (max 15µs)
 - Changeable output filter (10kHz)
- Noise characteristic
 - PWM as comparator (implementation on FPGA)
 - Quantization effects/noise (8, 10, 11 bit)

Conclusion from simulation

 PWM switching filtered by the output filter and by bandwidth limiting elements (magnet, yoke lamination and vacuum chamber)

→ 1nm expected maximum orbit distortion

Noise is working point dependent, but well below the BPM resolution

Goal to replace analytical model by PSD measurement for first prototype; further checks for 50Hz mains and harmonics contribution and other noise sources.

SISO simulation

FOFB simulation

Expected orbit jitter as function of FB gain

SISO closed loop simulation

- Feedback gain scan vs integrated orbit jitter •
- Measured in comparison to real orbit jitter ٠

10-5

10⁻¹⁰

Power spectral density of the disturbance and orbit

FB gain = 1.5

FOFB simulation

Expected orbit jitter as function of FB gain

SISO closed loop simulation

- Feedback gain scan vs integrated orbit jitter •
- Measured in comparison to real orbit jitter ٠

10-5

 $PSD(x) in mm^2/Hz$ 10-10-12

Power spectral density of the disturbance and orbit

FB gain = 0.7

FOFB simulation

Expected orbit jitter as function of FB gain

SISO closed loop simulation

DESY.

- Feedback gain scan vs integrated orbit jitter
- Measured in comparison to real orbit jitter ٠

→ MIMO mode space simulation to check noise & disturbance suppression ongoing

Waterbed effect at 2.5kHz

given by T_D and BW

(amplification of BPM noise)

Power s

10-5

Conclusion & Outlook

Conclusion

- PETRA IV as the most important project at DESY
- Passive and active orbit stabilization
 - Orbit distortions in stability task force
 - FOFB system design
 - Sub-system modelling and HW specifications
 - Noise and disturbance modelling
- SISO simulations

Next steps

- 1. PETRA III as benchmark system for MIMO simulations
- 2. Full MIMO simulation with all noise and disturbance sources
- 3. Spatial disturbance integration including coherence length and transition
- 4. Different BPM supports (ground, girder)
- 5. Optimal (& robust) integration of photon diagnostics into (F)OFB

Thank you for your attention!

Contact

DESY. DeutschesSven PfeifferElektronen-SynchrotronWP 2.08 - Feedback
sven.pfeiffer@desy.dewww.desy.de+49 40 8998 - 2744

The PETRA IV project timeline hinges on project approval by mid-2026

The draft breakdown below hinges on

- Project approval in mid 2026
- Call for tender start in mid 2027
- PIII shutdown end 2029

- Procurement for the accelerator estimated to 3 years
- Dark period 30 months
- Three months commissioning time
- First light in Jul 2032