A Transparent Injection Scheme for Diamond-II

lan Martin

A. Amiri, C. Bailey, T. Dobbing, J. Kallestrup (now at PSI), A. Lueangaramwong (now at BNL), A. Morgan, W. Tizzano, V. Zhiltsov Diamond Light Source Ltd.

> J. Hares, T. Dymoke-Bradshaw, P. Kellett Kentech Instruments Ltd.

I.FAST Workshop 2025 on Stability of Storage Ring Based Light Sources KIT, 18th/19th March 2025

Talk Outline

Introduction to Diamond-II:

Requirements for injection Injection schemes and layout

Single bunch injection with fast stripline kickers:

'Aperture-sharing' vs. 'Kick-and-cancel' injection

Injection simulations (transparency, collective effects, error sensitivity)

Hardware overview:

Diamond-II injection magnet specifications Design status / prototyping on Diamond

Conclusions

Diamond-II Lattice

Modified Hybrid 6-Bend Achromat (M-H6BA) for low emittance Number of insertion straights increased from 24 to 48

- Long straights: 7.54 m
- Standard straights: 5.06 m
- Mid straights: 2.92 m
- Off-axis injection for beam accumulation
- '-I' transformer plus const. cell phase for nonlinear dynamics

Passive SC harmonic cavity for lifetime / beam stability / IBS

Units **Diamond-II** Diamond Parameter Energy GeV 3.0 3.5 Circumference 560.6 560.560944 m Harmonic Number 936 934 499.654 499.511 **RF** Frequency MHz **Positive Bending Angle** 360.0 374.4 deg **Reverse Bending Angle** deg 0.0 14.4 360.0 388.8 **Total Bending Angle** deg [54.14, 20.24] Betatron Tunes [27.21, 12.36] _ Natural Chromaticity [-79.0, -35.6] [-68.2, -89.1] **Corrected Chromaticity** [1.7, 2.2] [2.6, 2.6]Mom. Compaction Factor ×10⁻⁴ 1.70 1.03 162 Natural Emittance 2729 pm.rad **Energy Spread** % 0.096 0.094 **Energy Loss per Turn** MeV 1.01 0.724 Natural Bunch Length 11.4@2.4 MV 12.4@1.4 MV ps **Horizontal Damping Partition** 1.00 1.88 _ 9.4 Horizontal Damping Time 11.1 ms Vertical Damping Time 11.2 18.1 ms Longitudinal Damping Time 16.1 5.6 ms

3

Injection Requirements

Injection requirements:

- 1) Off-axis accumulation (minimises requirements on injector; avoids beam dump?; improved reliability?)
- 2) Matched to available dynamic aperture / momentum acceptance (new booster required)
- 3) Minimise filling time after beam trip
- 4) Use proven technology where possible to minimise risk
- 5) Transparent top-up injection during user time (key requirement from users!)

Transparency figure of merit (FoM):

Injection Schemes

Diamond-II will operate two different injection schemes:

- 1) <u>PM thick septum + pulsed thin septum + standard four kicker bump (single or multi-bunch)</u>
- Robust, proven concept
- Can be adjusted for different stages during commissioning:
 - Stage 1: single shot, on-axis injection (first turns => first stored beam)
 - Stage 2: off-axis accumulation with non-closed bump (improved capture efficiency)
 - Stage 3: off-axis accumulation with closed orbit bump (improved transparency)
- 2) <u>PM thick septum + pulsed thin septum + fast stripline kickers (single bunch only)</u>
- Frequent top-up injection using single-bunch injection (transparent to users: 1 bunch in 900 kicked)

Injection Layout

Single-Bunch 'Aperture-Sharing' Injection

An aperture-sharing injection scheme was assumed during the Technical Design Report (TDR) phase:

- > Four-kicker bump is switched off, leaving injected bunch ~8 mm offset from on-axis stored beam
- > Injected bunch oscillates at large amplitude until it reaches the first mid-straight (K01)
- Stripline kickers reduce oscillation amplitude for injected bunch but cause stored bunch to oscillate at similar amplitude (i.e. initial injected bunch amplitude is shared between stored and injected bunches)

Single-Bunch 'Aperture-Sharing' Injection

Issues with aperture sharing:

- Impact on overall brightness from stored bunch oscillations
 - > Particular problem for hybrid bunch / timing mode users
 - Bunches before and after target bunch could also be kicked if pulse duration > 3 ns
- Transverse wakefields generated by stored bunch affecting injected bunch
- Interaction of multi-bunch feedback with off-axis bunches

Alternative: Implement a 'kick-and-cancel' double kick for the stored bunch

- 1) Give the stored bunch a pre-kick *n* turns before injection such that there is close to 180 degrees phase advance at injection
- 2) Injected bunch arrives as before:
 - stripline kicker still reduces injected bunch oscillation amplitude by ~factor 2
 - stored bunch is kicked back on-axis rather than being made to oscillate

Single Bunch 'Kick-and-Cancel' Injection

Brightness Comparison

Improved transparency:

- Target >99% flux through BL aperture
- Stored bunch back on axis after second kick
- Only injected bunch continues to oscillate

I.P.S. Martin, Diamond-II Injection, KIT 2025, 18/03/2025

diamond

Collective Effects

Injection efficiency calculated as a function of stored bunch charge including harmonic cavity (flat potential):

- > Impedance elements (resistive wall, cavity HOMs and short-range geometric)
- Element-by-element tracking including physical apertures, IDs and field/alignment errors
- Injected bunch charge = 0.1 nC
- Macroparticle charge = 0.1 pC (i.e. 3 nC stored = 30,000 macroparticles)
- Track stored bunch for 12K turns to reach equilibrium, add injected bunch and fire striplines, track for a further 3K turns

K&C lowers wakefield effects:

- Stored bunch is on-axis
- Can accumulate to higher charges
- More tolerant:
 - Smaller interaction with TMBF
 - Does not need harmonic cavity

11

Tolerance Studies

The sensitivity of injection efficiency to injected beam trajectory errors with stripline kickers has been studied using AT2 lattices at the end of Simulated Commissioning*:

- Commissioning procedure applied, including field and alignment errors, IDs, HHC and closed collimators
- Injection efficiency determined as a function of injected beam offsets for 40 lattices
- Only considers injected beam (no collective effects) applies to both aperture sharing and kick and cancel

*T. Hellert, et al., PRAB 25, 110701, (2022)

Stripline Kickers

Six sets of striplines are required, grouped in three separate modules:

Parameter	Units	Value
Length	mm	150
Full gap	mm	14.7
Bend angle per stripline	μrad	>156

Evolution of D-II MBF stripline design + SLS 2.0 solution:

- Double skin vacuum tank (Large outer chamber, internal pipe with pumping grills)
- Flat central section to improve field uniformity
- End tapers optimised to minimise field roll-off and reflections
- Rounded edges and maximise spacing to avoid arcing
- Cut-outs for synchrotron radiation

Stripline Power Supplies

To ensure only a single bunch is kicked, require:

$$\tau_{pulse} < \frac{2}{f_{RF}} - \frac{2L_{strip}}{c} = 3 \ ns$$

Prototype pulser developed by Kentech Ltd.

- Stage 1: +2.5kV, <15 ns, 4 pulses/cycle</p>
- Stage 2: ±4 kV, <4 ns, >10 pulses/cycle
- Stage 3: ±20 kV, <4 ns, >10 pulses/cycle

Specification

Post-pulse noise: <±5% for 15 ns, <±2% thereafter (over 2:1 tuning range)

Amplitude / timing jitter: <±5% / <±0.1 ns

# Striplines	Nominal bend angle	Nominal Stripline Voltage	Power Supply Peak Voltage*
All 6 operational	124 µrad	11.7 kV	15.9 kV
5 out of 6 (#6 failed)	156 µrad	14.7 kV	20.0 kV
*includes increase to account for 12% cable losses and +20% contingency for tuning I.P.S. Martin, Diamond-II Injection, KIT 2025, 18/03/2025			

Prototype Stripline

BTS Test

Stand

Prototype striplines under development to validate D-II design choices and test individual components:

- Rotated by 90 degrees
- Larger apertures to suit Diamond injection
- Single-skin vacuum chamber

Stage 1 – Lab tests (Feb 2025)

- S-parameter measurements validated simulations
- Pulser / cabling / feed-throughs successfully tested
- <u>Stage 2</u> BTS tests (Spring 2025)
- Kick amplitude and field quality
- Stage 3 Storage Ring tests (Summer 2025)
- Kick and cancel operation
- Impedance and beam dynamics

Pulsed Thin Septum Magnet

Thin electromagnetic septum (1 mm, in-vacuum)

- 0.6 T, 400 mm long, 10 µsec full sine, iron powder core
- Targeting 10 µTm integrated leakage field for transparency

Prototype mock-up

- 120 mm long, full cross-section
- Tested shielding configuration examples:
 - > 0.5 mm copper
 - > 0.5 mm copper + 0.1 mm iron layers
 - > 0.5 mm copper + 0.05 mm mumetal layers
 - > 0.5 mm copper + 0.05 mm nanocrystalline layers
- Issues with power supply output (repurposed kicker PS)
 - hoise in the measurements
 - clean full-sine pulse not possible
- Believe end leakage might be dominating, even in the centre of the magnet (no end shielding in mock-up)

Permanent Magnet Main Septum

Thick PM septum (8.5 mm, out-of-vacuum)

- PM septum reduces shot-to-shot jitter for injected beam position and angle
- Static leakage field eliminates disturbance during top-up
- Different strength modules to optimise shielding close to the stored beam (0.6 T end module, up to 1.5 T further away from the beam)
- Integrated (DC) leakage field: aiming $<100 \mu$ Tm
- Field tuning mechanisms under study:
 - Extra corrector in transfer line
 - DC EM module to replace 1T PM module
 - Mechanical shunts also possible but difficult to implement

Field uniformity and leakage in the end module (different scales)

Stored

beam

region

Conclusions

Two injection schemes developed for Diamond-II

Updated 'classic' four-kicker bump scheme for commissioning and beam refills:

- Flexible, adjustable
- Can be single or multi-bunch injection (reduces fill-time and/or number of injection shots per cycle)
- Risk minimization: maintains fallback options; robust, proven technology

Transparent injection during top-up using single-bunch 'kick-and-cancel' injection:

- Only 1 bunch in 900 is kicked
- Can be installed / tested / developed separately from basic injection scheme
- Upgrade path for injection into potential future 'high-brightness' lattices

Several key technologies under development:

- In-vacuum eddy current thin septum
- PM out-of-vacuum thick septum magnet
- 150 mm striplines
- Few nanosecond pulsers from industry

Stage	Scheme	Mode
Commissioning	4-kicker bump	Multi/single bunch
User mode - refill	4-kicker bump	Multi/single bunch
User mode - top up	Kick-and-cancel injection	Single-bunch
Future brightness upgrade?	Kick-and-aperture-share	Single-bunch
5	18	Signal States States

Extra Slides

Septum Leakage Field

Leakage field from the pulsed septum magnet can affect injection transparency:

- Impact studied during TDR phase assuming generic 100 us full sine pulse (SLS septum pulse shape assumed)
- Impact on any given beamline depends on local β and phase advance between septum and source point
- Could add a compensation magnet to counter the leakage field, if required
- Leakage field depends on shield material and pulse duration $f: B_y(x) = B_y(0)e^{-x/\delta}$, $\delta = 1/\sqrt{\pi\mu\sigma f}$
 - > Minimum septum pulse duration is defined by multi-bunch injection requirements
 - > D-II plans for 180 bunch trains (360 ns) in multi-bunch injection (pulse duration irrelevant for SB inj.)

98

96

94

92

90

88

84

20

Figure of Merit [%]

Pulsed Thin Septum Magnet

 $^{-1}$

-0.5

0.0

0.5

1.0

1.5

Time [s]

2.0

2.5

Copper shielding only

- Visible phase shift of the peak leakage field (matching opera predictions)
- Leakage dominated by field penetrating the copper septum blade

Copper plus Iron shielding

- No phase shift of the peak field (as expected)
- Leakage dominated by field penetraing openings/ends?

No improvements with different other materials/layers:

- Shielding with other materials did not match simulations
- All materials provided similar levels of shielding
- No improvement from increasing stacking layers

Mock-up thin septum, 0.5mm copper sheet shielding

3.0

3.5

1e-5

I.P.S. Martin, Diamond Update, ESLS 2024, 9/12/2024