

Silicon Carbide based X-ray beam monitoring Massimo Camarda [SenSiC GbmH (sensors, CH) & STLab srl (electronics, IT)]

- 1. Mission of SenSiC GmbH (& STLab srl)
- 2. Locations of X-ray beam monitors
- 3. Whitebeam (polychromatic) monitoring
 - I. Hole based sensors (orthogonal to the beam)
 - II. Blade based sensors (parallel to the beam)
 - III. Slit integrated sensors (orthogonal, but moveable)
- 4. Conclusions (+ presentation on controls + join EU project)

Generalities of Synchrotron X-ray beam monitoring

Standard "thin-membrane" XBPM

Comparison between Diamond and SENSIC Silicon Carbide XBPM

> "A comparison between <u>single crystal diamond</u> and SiC X-ray beam position monitors"

> > HOUGHTON, Diamond Light Source, SRI/JSR

Monochromatic XBPM successfull SiC XBPM feedback-loop schema

x5 Improvement using feedback system using SIC XPBN

Control/feedback important in spectroscopy measurements to

compensate for energy induced drifts!

*sigma: <400nm

Generalities of whitebeam monitoring

Generalities of whitebeam monitoring

WE ARE NOT MEASURING THE «TAILS» OF THE BEAM

WE ARE REALLY MEASURING THE «OFF HARMONIC» COMPONENTS!

CROSS-CHROMATIC MONITORING

Knife-edge scan at center SENSIG *"HOLE-type"* 2um SiC XBPM, microXAS

Lateral resolution of [1.8um,2.7um]

<u>(≈x2 improvement!!)</u>

HOLE-type whitebeam sensors: SENSIG FILTERING METHOD

STANDARD HOLE SIC XBPM

FILTERING HOLE SIC XBPM

filtering everything below 7.5keV \rightarrow <u>cross-chromatic</u> monitoring

filtering everything below 7.5keV \rightarrow bendig magnet radiation

Whitebeam monitoring SENSIG "FILTERED Blade-type" 2um SiC XBPM, microXAS

Max current on device (diaphram) 2 [mA] (>x1000 reduction) Lateral resolution of [0.7um,0.22um] (>x3-10 improvement*)

2um mem= [2.7um, 3.7um] blade=[1.8um,2.7um]

Knife-edge scan at center for microXAS

Pinkbeam sensors: hole-type sensors

Limits of hole-type sensors

Limits of hole-type sensors

(A) (B) (C) (D)

Limits of hole-type sensors

Metal (Tungsten) blade monitors

Currently avaiable whitebeam monitors METAL BLADES SENSORS

Sensors comparison

Sensors comparison

CRITICAL HEATLOAD

NON-CRITICAL HEATLOAD

New Semiconductor-based SiC Blades

New Semiconductor-based SiC Blades

34% temperature reduction

New Semiconductor-based SiC Blades

semiconductor based

internal photoemission

- 1. 34% temperature reduction
- 2. MUCH HIGHER (>X100) SIGNALS (internal charge multiplication)
- 3. NO SIGNAL CHANGES DUE TO SURFACE CONTAMINATIONS
- 4. POSSIBILITY OF FILTERING BACKGROUND SIGNAL

Substitution of metal blades to SiC ones / agreements

- POSSIBILITY OF <u>RETROFITTING ALL-INSTALLATIONS</u>
- AGREEMENT WITH FMB-BERLIN TO TEST NEW SYSTEM
- AGREEMENT WITH DLS (UK) TO INSTALL NEW SYSTEM
- AGREEMENT WITH PSI TO INSTALL NEW SYSTEM (after DLS/DT)

Whitebeam sensors integrated in movevable slits (PXI-SLS)

conclusions

 SenSiC (sensors) and STLab (readout&controls*) are pursuing (with all difficulties...) development of diagnostic elements at all X-ray stages

*Dr. N. La Rosa Wednesday 17:25

conclusions

- SenSiC (sensors) and STLab (readout&controls*) are pursuing (with all difficulties...) development of diagnostic elements at all X-ray stages
- Whitebeam represents a hot development, aiming to fullfill an technology gap, to support beam stabilization(s) [X-ray, downstream, electrons, up stream]

*Dr. N. La Rosa Wednesday 17:25

conclusions

- SenSiC (sensors) and STLab (readout&controls*) are pursuing (with all difficulties...) development of diagnostic elements at all X-ray stages)
- Whitebeam represents a hot development, aiming to fullfill an technology gap, to support beam stabilization(s) [X-ray, downstream, electrons, up stream]
- We are developing three different sensors types:

(1) HOLE TYPE

Validated at PSI & IHEP submicron resolution

(2) BLADE TYPE

(3) SLITS INTEGRATED

- *We are also developing readout & control electronics
- We are looking for <u>interested institutions for EU project proposal</u>

*Dr. N. La Rosa Wednesday 17:25

Dr. N. La Rosa Wednesday 17:25 "Development of control systems for the stabilization of synchrotron X-ray beams"

EUREKAT-EUROSTAR EU PROJECT

"Precision Active Control of Xray Beamlines" (PAC-X)

• 500k€-1000k€ /2-3years project

- Grants covering up to [40% (FR) / 70% (SE) / 100% (DE)] of project costs
- Deadline 12th September
- Beamtimes from facilities will allow testing/development of sensors+readout+control (turn-key) solutions
- Developed systems will be owned by facilities/beamlines at the end of the project(!)
- SOLEIL, ELETTRA, PTB/BETTY-II already IN (as single beamlines)