

Introduction of KARA Storage Ring

Akira Mochihashi, 19.03.2025

Karlsruhe Research Accelerator (KARA)

KIT synchrotron light source & accelerator test facility

Parameters	Values	
Circumference	110.4 m	
Energy range	0.5 – 2.5 GeV	
RF frequency	499.7 MHz	Injection at 500 MeV
Revolution frequency	2.715 MHz	User Operation at 2.5 GeV
Harmonic number	184	Non-Top-Up Machine
Beam current	up to 200 mA	
r.m.s. bunch length	45 ps (2.5 GeV) a few ps (1.3 GeV, low-alpha)	
Lattice structure	DBA	

Quadupole Families at KARA

Quadrupoles: Five-Family Configuration

Family name	Main function	Location and total number
Q1	Horizontal-quads	The first-Q at long straight: 8
Q2	Vertical-quads	The second-Q at long straight: 8 (up- and downstream of the first bend)
Q3	Horizontal-quads, dispersion control	In the gap of separated bends: 8
Q4	Vertical-quads	The first-Q at short straight: 8 (up- and downstream of the second bend)
Q5	Horizontal-quads	The second-Q at short straight. 8
25 Betafunctions 10 5 Q1Q2	Q3 Q4 Q5 Q5 Q4	Q3 Q2 Q1

BPMs at KARA

Basic configuration ... located at

- up- and downstream of every separated bend
- upstream of the Q1-Q2 doublet in the long straights

39 of 40 are integrated into the closed orbit measurement system now.

(1 BPM at the downstream of the second bend in sector-4 is not in operation)

BPM modules:

• Libera Brilliance (i-Tech)

Corrector (Steering) Magnets at KARA

Location and total number: horizontal correctors

- One upstream of the Q1-Q2 doublet
- Two in one gap of the separated bends
- One in the short straight
- In total ... 28 horizontal correctors

Location and total number: vertical correctors

- One between the Q1-Q2 doublet
- Two in the short straight

In total ... 16 vertical correctors

Available Operation Energy at KARA

Available operation energy range: 0.5 – 2.5 GeV

- Several typical operation beam energies:
 - 0.5 GeV for injection
 - 1.3 GeV for low-alpha & short bunch experiment (for CSR generation, etc.)
 - <u>2.2 and 2.3 GeV for power-saving operation</u>
 - <u>2.5 GeV for normal user operation</u>
- Power-saving operation at 2.2 and 2.3 GeV
- ... One of two RF stations (klystrons) can be switched off.
- *Two RF stations are needed for the 2.5 GeV operation.

Magnets at Energy-Saving Operation

Output current for each power supply of quadrupole families and bending magnet

Magnets	2.2 GeV (A)	2.3 GeV (A)	2.5 GeV (A)
Q1	295	311	343
Q2	298	323	374
Q3	256	267	288
Q4	278	285	309
Q5	283	296	330
Bend	551	583	664

A fascinating point:

Can the spatial offset of quadrupole magnets change in different operating energy modes?

Experiment 1: Beam-Based Alignment (BBA)

The purposes:

To measure special offsets of quadrupole magnets in different machine operation energy

Ideas (Christian will present them in detail)

- BBA at 2.5 GeV operation in different beam currents (two klystrons)
- BBA at 2.2 and 2.3 GeV (one klystron)
- Measurement of lattice functions under the experimental conditions
- BBA at 2.5 GeV by changing the temperature of cooling water (technically possible?)
- Touch, disconnect and reconnect the BPM cables to see the effect on the measured beam position.
- BBA by deactivation of sextupole magnets
- BBA by change of the magnet-cycling procedure (ex. the number of cycling, warming-up time)

Experiment 2: System identification of the corrector magnets system

The purposes:

To measure the time response of the entire corrector magnet system (power supply, magnet, vacuum chamber, control system). This is relevant for FOFB (fast orbit feedback system).

Ideas (Günther will explain them in detail)

- Kick the beam with a chosen corrector magnet using a step-function change
- Observe the stored beam response using a fast (> 10 k Samples/sec) BPM.
- Synchronization between the corrector kick and the beam orbit recording is relevant

(The synchronisation system is not yet ready for KARA, so this time we can only do some basic tests)

