BESSY III orbit correction scheme layout and performance

Sébastien Joly Beñat Alberdi Esuain Michael Arlandoo

Helmholtz-Zentrum Berlin

18/03/2025

Acknowledgments: Paul Goslawski, Lukas Malina, Michael Abo-Bakr, Bettina Kuske

S. Joly (Helmholtz-Zentrum Berlin)

BESSY III orbit correction

18/03/2025

Table of Contents

1 Introduction

2 Theory

3 Orbit correction constraints and quality metrics

Orbit correction scheme candidates BESSY II-like scheme SLS-like scheme Currrent scheme Summary

5 Conclusion

S. Joly (Helmholtz-Zentrum Berlin)

(a)

HZB Helmholtz

э

Fourth generation light source BESSY III

BESSY III is a 4th generation light source, located in Berlin, scheduled to start its operation by the mid-2030s.

Currently in its Conceptual Design Report (CDR) phase, BESSY III robustness against misaligments and errors is being carried out.

BESSY III lattice and key parameters

Table: BESSY III key parameters.

HZB Helmholtz Zentrum Berlin

Lattice error propagation and correction

Once a lattice linear and non-linear behavior has been studied and optimized, the next step is to study its robustness including magnetic errors, misalignments, tilts, etc \rightarrow realistic lattice.

To do so, SC^1 (and its python counterpart $pySC^2$) can be used to include and propagate various error sources in an AT (or pyAT) lattice as well as providing trajectory/orbit correction algorithms.

SC and pySC are currently foreseen to be used to generate BESSY III error model and simulated commissioning.

Table of Contents

1 Introduction

Orbit correction constraints and quality metrics

Orbit correction scheme candidates BESSY II-like scheme SLS-like scheme Currrent scheme Summary

6 Conclusion

S. Joly (Helmholtz-Zentrum Berlin)

(a)

HZB Helmholtz

6/34

э

Closed orbit errors

The presence of misalignments, tilts, and magnetic field errors leads to a distortion of the closed orbit.

Their effects can be expressed as dipolar kicks κ_i around the storage ring:

$$\Delta x(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi\nu)} \sum_{i=1}^{K} \kappa_i \sqrt{\beta(s_i)} \cos\left(|\phi(s) - \phi(s_i)| - \pi\nu\right)$$
(1)

Where s is the position along the ring, β is the beta function, v is the tune, ϕ is the phase advance, and K dipolar kicks are assumed around the ring.

Global orbit correction (1/2)

In a real storage ring, the closed orbit can only be measured at the locations of Beam Position Monitors (BPM). The BPM closed orbit readings at their respective locations (\vec{d}) can now be expressed in a matrix form:

$$\vec{d} = \mathbf{A}\vec{\kappa} \tag{2}$$

$$A_{mk} = \frac{\sqrt{\beta_m \beta_k}}{2\sin(\pi \nu)} \cos\left(|\phi_m - \phi_k| - \pi \nu\right) \tag{3}$$

Where **A** is a matrix of dimensions $M \times K$ (# BPM \times # dipolar kicks)

HZB Helmholtz Zentrum Berlin

Global orbit correction (2/2)

In addition to BPM, a storage ring comprises corrector magnets (CM), which compensate for the closed orbit distortions along the ring. Keeping the same formalism as previously, \vec{d} can be extended as:

$$\vec{d'} = \mathbf{A}\vec{\kappa} + \mathbf{B}\vec{\theta}$$
(4)

$$B_{mn} = \frac{\sqrt{\beta_m \beta_n}}{2\sin(\pi \nu)} \cos(|\phi_m - \phi_n| - \pi \nu)$$
(5)

Where **B** is a matrix of dimensions $M \times N$ (# BPM \times # correctors)

The goal of orbit correction is to find the optimal corrector strengths $\vec{\theta}$ to minimize the impact of $\mathbf{A}\vec{\kappa}$.

Corrector strength calculations

To do so, a SVD decomposition coupled with some regularization technique can be employed. The SVD decomposition over **B** yields $\mathbf{B} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$. Here, **S** is the diagonal singular value matrix.

Then, the optimal CM strenghts $\vec{\theta}$ to minimize the closed-orbit displacements reads: $\vec{\theta} = \mathbf{VS}^{-1}\mathbf{U}^{\top} (\vec{d} - \vec{d'})$.

However, low singular values may lead to unwanted noise due to S^{-1} . Two strategies can be applied to overcome this limitation:

- Truncating the matrix **B**, keeping only the largest singular values
- Applying Tikhonov regularization

3 > < 3 >

Tikhonov regularization

The Tikhonov regularization consists of modifying the S^{-1} elements to $\tilde{S}_{ii}^{-1} = \frac{\sigma_i}{\sigma_i^2 + \alpha^2}$ where σ_i is the ith singular value of the matrix **B** and α the regularization parameter.

It effectively circumvents the problems linked to small singular values by artificially increasing the smallest ones and leaving almost untouched the largest ones.

Critera for efficient orbit correction

$$B_{mn} = \frac{\sqrt{\beta_m \beta_n}}{2\sin(\pi \nu)} \cos(|\phi_m - \phi_n| - \pi \nu)$$

The matrix \mathbf{B} is often referred to as an Orbit Response Matrix (ORM). It quantifies the sensibility of a storage ring to a change in the corrector strengths.

Finding an efficient correction scheme consists of maximizing the elements of ${\bf B}$.

Two criteria:

- Maximize both the BPM and corrector beta functions $\beta_m \beta_n$
- Find the optimal phase advance between a BPM and a corrector $\cos\left(|\phi_m \phi_n| \pi v\right)$

Phase advance criterion

The optimal phase advance difference $|\phi_m - \phi_n|$ is given by the following condition:

$$\frac{|\phi_m - \phi_n| - \pi v}{2\pi} = integer \qquad (6)$$

For the BESSY III reference lattice, we find 129° in the horizontal plane and 142° in the vertical plane.

 \triangle The phase advance criterion depends on the tune itself; thus, changing it can impact the efficiency of an orbit correction scheme.

HZB Helmholtz Zentrum Berlin

Beta function criterion

- Ideally, BPM and correctors should be placed where the beta function is maximum and along an isoline in phase advance
- In practice, both conditions are difficult to meet simultaneously
- \rightarrow Trade-off needed

Table of Contents

1 Introduction

2 Theory

3 Orbit correction constraints and quality metrics

Orbit correction scheme candidates BESSY II-like scheme SLS-like scheme Currrent scheme Summary

6 Conclusion

(a)

HZB Helmholtz

э

Enforced lattice constraints

Technical constraints:

- CM are embedded in quadrupoles or sextupoles and BPM are placed next to them (but possibility of also having standalone CM \rightarrow to be studied)
- Try to avoid both planes CM in a single element
- Sufficient space for CM (if standalone) and BPM

Beam dynamics constraints:

- BPM and CM are placed at large β_x, β_y
- Phase advance criterion is followed as closely as possible

∃ ► < ∃ ►</p>

Quality metrics

The efficiency of an orbit correction scheme is assessed through its:

- Number of CM and BPM
- Residual RMS orbit offset in:
 - BPM
 - Sextupoles (partly dictate final DA)
 - All elements
- CM strengths

The on and off-momentum dynamic apertures were neglected as they were comparable for most schemes. They are not relevant without complete LOCO corrections.

A (10) × (10)

Error table

The misalignments used in SC/pySC are listed in the table below:

	$\Delta x [\mu m]$	$\Delta y ~[\mu m]$	$\Delta z \ [\mu m]$	Roll [μ rad]
Small magnets	35	35	0	100
Dipoles	100	100	0	100
BPM	0	0	0	0

In addition, field errors of 1‰ were applied to all magnets. The BPM and CM calibration errors were neglected in this study. All errors are generated according to a 2σ truncated Gaussian process.

Table of Contents

1 Introduction

2 Theory

3 Orbit correction constraints and quality metrics

Orbit correction scheme candidates BESSY II-like scheme SLS-like scheme Currrent scheme Summary

6 Conclusion

A (10) × (10)

HZB Helmholtz

э

BESSY II-like scheme: BPM and CM layout

- BPM next to Q[1,4], O1, B2 (14 BPM/superperiod)
- H-corrector in Q[1,4], S[2,5,8] (9 HCM/superperiod)
- V-corrector in Q[1,4], S[3,6] (8 VCM/superperiod)

BESSY II-like scheme: RMS orbit & CM strengths

- Sub 15 μm RMS orbit in x and sub 20 μm in y
- Spread out RMS orbit distributions
- Large CM strengths in both planes

18/03/2025

HZB Helmholtz Zentrum Berlin

SLS-like scheme: BPM and CM layout

- BPM next to Q[1,4], S[2,5,8] (9
 BPM/superperiod)
- H-corrector in Q[1,4], S[2,5,8] (9 HCM/superperiod)
- V-corrector in Q[1,4], S[2,5,8] (9 VCM/superperiod)

- ∢ ≣ →

SLS-like scheme: RMS orbit & CM strengths

- 0 μm RMS orbit in both planes thanks to square scheme
- Non-zero orbit at sextupoles and all elements
- Large CM strengths in both planes

18/03/2025

HZB Helmholtz Zentrum Berlin

Current scheme: BPM and CM layout

- BPM next to Q[2,3], Q6 (12 BPM/superperiod)
- H-corrector in Q[2,3], S[2,5,8] (9 HCM/superperiod)
- V-corrector in Q[2,3], S[3,6,8] (9 VCM/superperiod)

- E - D

Current scheme: RMS orbit & CM strengths

- Sub 10 μm RMS orbit in x and sub 15 μm in y
- Reduced spread of the RMS orbits
- Small CM strengths in both planes

18/03/2025

HZB Helmholtz Zentrum Berlin

Summary

		BESSY II-like	SLS-like	Current
RMS orbit at BPM [µm]		$11.8{\pm}1.3$	$0.0 {\pm} 0.0$	7.2±0.9
		$15.2{\pm}1.2$	0.0±0.0	10.9 ± 1.2
PMS orbit at contunales [um]	х	30.5±12.2	16.0 ± 1.2	$16.1{\pm}1.1$
Rivis orbit at sextupoles $[\mu \Pi]$	У	22.3 ± 2.0	$16.7 {\pm} 1.0$	$19.0{\pm}1.6$
RMS orbit at all elements $[\mu m]$		27.8 ± 10.5	$14.4{\pm}1.0$	$15.4{\pm}1.1$
		20.3 ± 1.6	14.8 ± 0.8	17.9 ± 1.6
Std CM strength [mrad]		0.69	0.71	0.53
		0.63	0.65	0.53
Number of BPM/HCM/VCM		14/9/8	9/9/9	12/9/9

Observations:

- Adequate number and location of $\mathsf{BPM} \to \textbf{similar RMS}$ orbit at sextupoles and all elements
- Square scheme $(n_{BPM} = n_{HCM} = n_{VCM})$ allows zero RMS orbit at BPM only
- With current scheme, smallest RMS orbit at sextupoles → DA conservation & smallest CM strength → relaxed technical feasibility

< 47 ▶

→

э

Table of Contents

1 Introduction

2 Theory

3 Orbit correction constraints and quality metrics

Orbit correction scheme candidates BESSY II-like scheme SLS-like scheme Currrent scheme Summary

5 Conclusion

(a)

HZB Helmholtz

27 / 34

э

Conclusion

- Presentation of physics-based criteria to guide the development of the orbit correction scheme:
 - Maximum $\beta_{x,y}$ at BPM and CM
 - Adequate $\phi_{x,y}$ between BPM and CM
- Capabilities of SVD and Tikhonov regularization approach
- Square orbit correction scheme allows for zero RMS orbit at BPM but not at sextupoles A
- Current BESSY III scheme demonstrates good orbit correction at BPM/sextupoles/all elements in both planes while minimizing the CM strengths

∃ ► < ∃ ►</p>

Next steps

- Verify orbit correction schemes' performance with stand-alone CM
- Add CM calibration errors and BPM errors
- Perform LOCO/phase advance correction and assess lattice robustness
- Confirm orbit correction schemes' performance in the presence of linear coupling

3 × 4 3 ×

Thank you for your attention!

Feel free to ask questions now or by email

sebastien.joly@helmholtz-berlin.de

Backup slides

3

S. Joly (Helmholtz-Zentrum Berlin)

BESSY III orbit correction

18/03/2025

(a)

Alternative scheme: BPM and CM layout

- BPM next to Q[1,2], 1st QB1, QB2 (9 BPM/superperiod)
- H-corrector in Q2, S[2,5,8] (7 HCM/superperiod)
- V-corrector in Q3, S[1,3,4,6,7] (12 VCM/superperiod)

<u>∧</u>Broken symmetry

< 47 ▶

Alternative scheme: RMS orbit & CM strengths

- Sub 10 μm RMS orbit in both planes
- Slightly worse RMS orbit at sextupoles/all elements than current scheme
- Asymmetric CM strengths in both planes, extremely small in y thanks to the number of VCM

HZB Helmholtz Zentrum Berlin

S. Joly (Helmholtz-Zentrum Berlin)

18/03/2025

Condition number

In Linear Algebra, the condition number of a matrix M is defined as $C(M) = \frac{\sigma_{max}(M)}{\sigma_{min}(M)}$ where $\sigma(M)$ is a singular value (or eigenvalue for a square matrix) for the matrix M.

It quantifies how well-conditioned a matrix is for inversion \rightarrow accurate inverse matrix and small numerical errors.

Truncating the number of kept singular values or applying a Tikhonov regularization changes the condition number of a matrix.

< 回 > < 三 > < 三 >