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Introduction

Fourth generation light source BESSY III

BESSY III is a 4th generation light source, located in Berlin, scheduled to
start its operation by the mid-2030s.
Currently in its Conceptual Design Report (CDR) phase, BESSY III
robustness against misaligments and errors is being carried out.
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Introduction

BESSY III lattice and key parameters
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E [GeV] C [m] h VRF [MV]
2.5 362.9 607 1 - 2

εx [pm·rad] σR MS
z [mm] σR MS

δ
α0

100 3.4 9.8×10−4 > 10−4

Table: BESSY III key parameters.
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Introduction

Lattice error propagation and correction

Once a lattice linear and non-linear behavior has been studied and
optimized, the next step is to study its robustness including magnetic
errors, misalignments, tilts, etc → realistic lattice.

To do so, SC1 (and its python counterpart pySC2) can be used to include
and propagate various error sources in an AT (or pyAT) lattice as well as
providing trajectory/orbit correction algorithms.

SC and pySC are currently foreseen to be used to generate BESSY III error
model and simulated commissioning.

1Simulated Commissioning website
2Python Simulated Commissioning Github
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Theory

Closed orbit errors

The presence of misalignments, tilts, and magnetic field errors leads to a
distortion of the closed orbit.
Their effects can be expressed as dipolar kicks κi around the storage ring:

∆x(s) =
√
β(s)

2sin(πν)
K

∑
i=1

κi

√
β(si)cos(∣φ(s)−φ(si)∣−πν) (1)

Where s is the position along the ring, β is the beta function, ν is the tune,
φ is the phase advance, and K dipolar kicks are assumed around the ring.
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Theory

Global orbit correction (1/2)

In a real storage ring, the closed orbit can only be measured at the locations
of Beam Position Monitors (BPM). The BPM closed orbit readings at their
respective locations (

Ð→
d ) can now be expressed in a matrix form:

Ð→
d =AÐ→κ (2)

Amk =
√
βmβk

2sin(πν) cos(∣φm −φk ∣−πν) (3)

Where A is a matrix of dimensions M × K (# BPM × # dipolar kicks)
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Theory

Global orbit correction (2/2)

In addition to BPM, a storage ring comprises corrector magnets (CM),
which compensate for the closed orbit distortions along the ring. Keeping
the same formalism as previously,

Ð→
d can be extended as:

Ð→
d ′ =AÐ→κ +B

Ð→
θ (4)

Bmn =
√
βmβn

2sin(πν) cos(∣φm −φn ∣−πν) (5)

Where B is a matrix of dimensions M × N (# BPM × # correctors)

The goal of orbit correction is to find the optimal corrector strengths
Ð→
θ to

minimize the impact of AÐ→κ .
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Theory

Corrector strength calculations

To do so, a SVD decomposition coupled with some regularization technique
can be employed. The SVD decomposition over B yields B =USV⊺.
Here, S is the diagonal singular value matrix.

Then, the optimal CM strenghts
Ð→
θ to minimize the closed-orbit

displacements reads:
Ð→
θ =VS−1U⊺(Ð→d −

Ð→
d ′).

However, low singular values may lead to unwanted noise due to S−1. Two
strategies can be applied to overcome this limitation:
● Truncating the matrix B, keeping only the largest singular values
● Applying Tikhonov regularization
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Theory

Tikhonov regularization

The Tikhonov regularization consists of modifying the S−1 elements to
S̃−1

i i =
σi

σ2
i +α

2 where σi is the ith singular value of the matrix B and α the
regularization parameter.
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It effectively circumvents the prob-
lems linked to small singular values
by artificially increasing the smallest
ones and leaving almost untouched
the largest ones.
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Theory

Critera for efficient orbit correction

Bmn =
√
βmβn

2sin(πν) cos(∣φm −φn ∣−πν)

The matrix B is often referred to as an Orbit Response Matrix (ORM). It
quantifies the sensibility of a storage ring to a change in the corrector
strengths.
Finding an efficient correction scheme consists of maximizing the elements
of B.
Two criteria:
● Maximize both the BPM and corrector beta functions βmβn

● Find the optimal phase advance between a BPM and a corrector
cos(∣φm −φn ∣−πν)
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Theory

Phase advance criterion
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The optimal phase advance difference
∣φm−φn ∣ is given by the following con-
dition:

∣φm −φn ∣−πν
2π

= i nteg er (6)

For the BESSY III reference lattice, we find 129° in the horizontal plane
and 142° in the vertical plane.

"The phase advance criterion depends on the tune itself; thus, changing it
can impact the efficiency of an orbit correction scheme.
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Theory

Beta function criterion
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● Ideally, BPM and
correctors should be
placed where the beta
function is maximum and
along an isoline in phase
advance
● In practice, both

conditions are difficult to
meet simultaneously

→ Trade-off needed
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Orbit correction constraints and quality metrics
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Orbit correction constraints and quality metrics

Enforced lattice constraints

Technical constraints:
● CM are embedded in quadrupoles or sextupoles and BPM are placed

next to them (but possibility of also having standalone CM → to be
studied)
● Try to avoid both planes CM in a single element
● Sufficient space for CM (if standalone) and BPM

Beam dynamics constraints:
● BPM and CM are placed at large βx ,βy

● Phase advance criterion is followed as closely as possible
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Orbit correction constraints and quality metrics

Quality metrics

The efficiency of an orbit correction scheme is assessed through its:
● Number of CM and BPM
● Residual RMS orbit offset in:

● BPM
● Sextupoles (partly dictate final DA)
● All elements

● CM strengths
The on and off-momentum dynamic apertures were neglected as they were
comparable for most schemes. They are not relevant without complete
LOCO corrections.
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Orbit correction constraints and quality metrics

Error table

The misalignments used in SC/pySC are listed in the table below:

∆x [µm] ∆y [µm] ∆z [µm] Roll [µrad]
Small magnets 35 35 0 100

Dipoles 100 100 0 100
BPM 0 0 0 0

In addition, field errors of 1‰ were applied to all magnets.
The BPM and CM calibration errors were neglected in this study.
All errors are generated according to a 2σ truncated Gaussian process.
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Orbit correction scheme candidates
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Orbit correction scheme candidates

BESSY II-like scheme: BPM and CM layout
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● BPM next to Q[1,4],
O1, B2 (14
BPM/superperiod)
● H-corrector in Q[1,4],

S[2,5,8] (9
HCM/superperiod)
● V-corrector in Q[1,4],

S[3,6] (8
VCM/superperiod)
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Orbit correction scheme candidates

BESSY II-like scheme: RMS orbit & CM strengths
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● Sub 15 µm RMS
orbit in x and sub 20
µm in y
● Spread out RMS

orbit distributions
● Large CM strengths

in both planes
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Orbit correction scheme candidates

SLS-like scheme: BPM and CM layout
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Orbit correction scheme candidates

SLS-like scheme: RMS orbit & CM strengths
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● 0 µm RMS orbit in
both planes thanks
to square scheme
● Non-zero orbit at

sextupoles and all
elements
● Large CM strengths

in both planes
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Orbit correction scheme candidates

Current scheme: BPM and CM layout
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Orbit correction scheme candidates

Current scheme: RMS orbit & CM strengths
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● Sub 10 µm RMS
orbit in x and sub 15
µm in y
● Reduced spread of

the RMS orbits
● Small CM strengths

in both planes
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Orbit correction scheme candidates

Summary

BESSY II-like SLS-like Current

RMS orbit at BPM [µm] x 11.8±1.3 0.0±0.0 7.2±0.9
y 15.2±1.2 0.0±0.0 10.9±1.2

RMS orbit at sextupoles [µm] x 30.5±12.2 16.0±1.2 16.1±1.1
y 22.3±2.0 16.7±1.0 19.0±1.6

RMS orbit at all elements [µm] x 27.8±10.5 14.4±1.0 15.4±1.1
y 20.3±1.6 14.8±0.8 17.9±1.6

Std CM strength [mrad] x 0.69 0.71 0.53
y 0.63 0.65 0.53

Number of BPM/HCM/VCM 14/9/8 9/9/9 12/9/9

Observations:
● Adequate number and location of BPM → similar RMS orbit at sextupoles and all

elements
● Square scheme (nBP M = nHC M = nV C M ) allows zero RMS orbit at BPM only
● With current scheme, smallest RMS orbit at sextupoles → DA conservation &

smallest CM strength → relaxed technical feasibility
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Conclusion

Conclusion

● Presentation of physics-based criteria to guide the development of the
orbit correction scheme:
● Maximum βx,y at BPM and CM
● Adequate φx,y between BPM and CM

● Capabilities of SVD and Tikhonov regularization approach
● Square orbit correction scheme allows for zero RMS orbit at BPM

but not at sextupoles "
● Current BESSY III scheme demonstrates good orbit correction at

BPM/sextupoles/all elements in both planes while minimizing the CM
strengths
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Conclusion

Next steps

● Verify orbit correction schemes’ performance with stand-alone CM
● Add CM calibration errors and BPM errors
● Perform LOCO/phase advance correction and assess lattice robustness
● Confirm orbit correction schemes’ performance in the presence of

linear coupling
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Conclusion

Thank you for your
attention!

Feel free to ask questions now or by email

sebastien.joly@helmholtz-berlin.de
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Backup slides

Alternative scheme: BPM and CM layout
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● BPM next to Q[1,2],
1st QB1, QB2 (9
BPM/superperiod)
● H-corrector in Q2,

S[2,5,8] (7
HCM/superperiod)
● V-corrector in Q3,
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"Broken symmetry
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Backup slides

Alternative scheme: RMS orbit & CM strengths
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● Sub 10 µm RMS
orbit in both planes
● Slightly worse RMS

orbit at
sextupoles/all
elements than
current scheme
● Asymmetric CM

strengths in both
planes, extremely
small in y thanks to
the number of VCM
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Backup slides

Condition number

In Linear Algebra, the condition number of a matrix M is defined as

C(M) =
σmax(M)
σmi n(M)

where σ(M) is a singular value (or eigenvalue for a

square matrix) for the matrix M .
It quantifies how well-conditioned a matrix is for inversion → accurate
inverse matrix and small numerical errors.

Truncating the number of kept singular values or applying a Tikhonov
regularization changes the condition number of a matrix.

S. Joly (Helmholtz-Zentrum Berlin) BESSY III orbit correction 18/03/2025 34 / 34


	Introduction
	Theory
	Orbit correction constraints and quality metrics
	Orbit correction scheme candidates
	Conclusion
	Backup slides

