

Update on my thesis

Gregor Brodbek

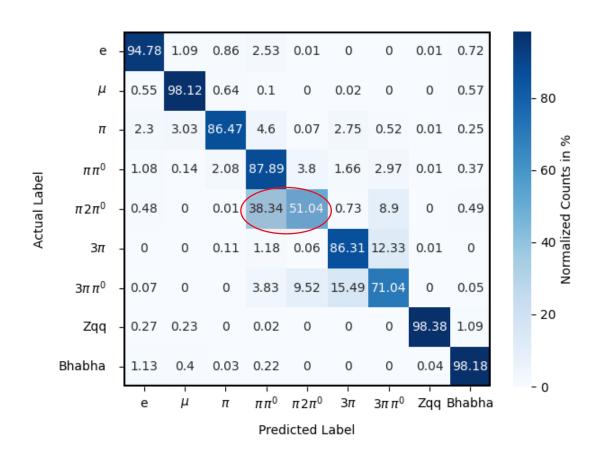
Recap: Aim of the Thesis

- Identification of tau decays by a ML algorithm
- Full simulation data of the CLD detector concept for FCC-ee
- Only low level detector data as inputs
- No variables from particle flow reconstruction as inputs

Recap: Full Simulation Data

- Use of full simulation data of the CLD detector concept
- Workflow:
 - MC simulation in Pythia8 for Z → ττ signal and Z → qq and bhabha background
 - CLD detector simulation using Geant4
 - Reconstruction with Pandora
- For the training:
 - Only the information of the detector hits (x,y,z coordinates, hit type, energy and momentum) as inputs
 - No inputs from reconstruction

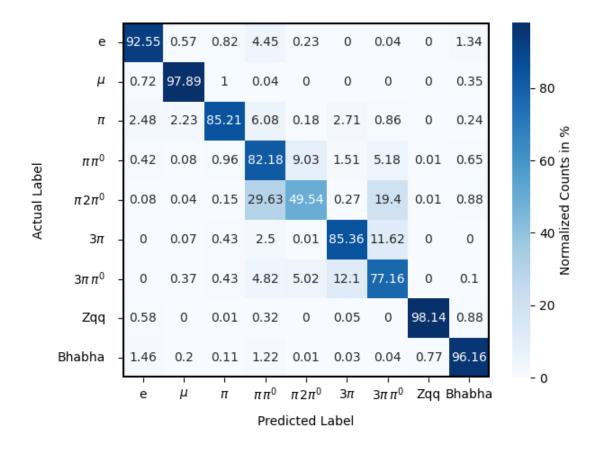
Recap: Model Training



- Training of a Geometric Algebra Transformer (GATr) model
- For the latest model:
 - 50,000 signal events
 - 20,000 Zqq and 10,000 Bhabha events
 - 50 epochs

Tau ID with Backgrounds

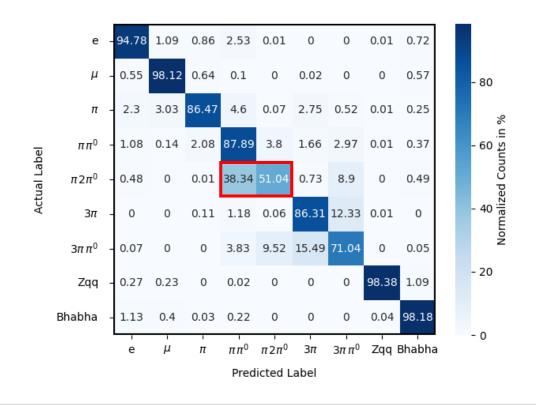
- Model that includes Zqq and bhabha backgrounds
- Tested with 50,000 signal, 20,000 Zqq and 10,000 Bhabha events
- Good performance for leptonic decays and backgrounds
- Bad efficiency for π $2\pi^0$ class, a lot are misclassified as $\pi\pi^0$
- Room for improvement for the $3\pi \pi^0$ class



February 6, 2025

Improving the Performance

- Doubling the weight on the loss calculation for the π $2\pi^0$ class
- Makes no real difference



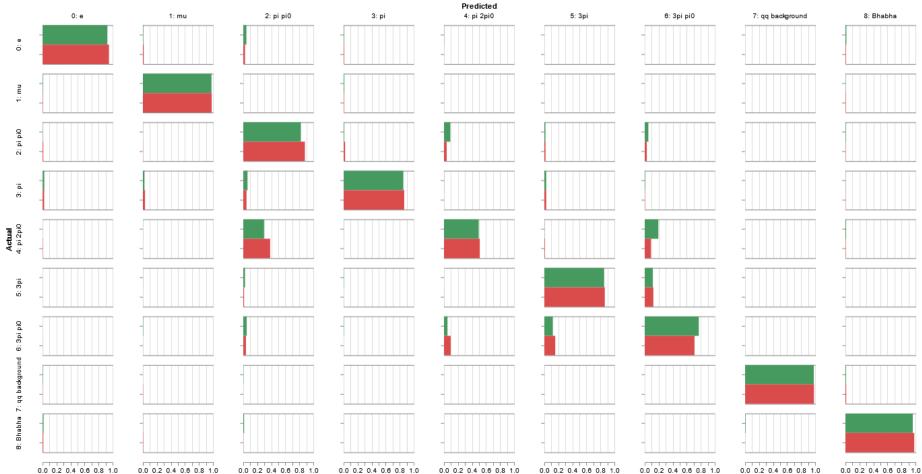
Explicit by Maria Cepeda

wacnine	Learning

	Reconstructed Tau ID							
	h	$h+\gamma$	$h+2\gamma$	$h+3\gamma$	$h+4\gamma$	3h	n	
π^{\pm}	0.81	0.03	0.00	0.01	0.01	0.00	0.13	
$\rho \; (\pi^{\pm}\pi^0)$	0.03	0.21	0.59	0.07	0.01	0.00	0.09	
$a_1 \; (\pi^{\pm} 2\pi^0)$	0.00	0.02	0.09	0.31	0.39	0.00	0.10	
$a_1 \; (\pi^\pm \pi^\mp \pi^\pm)$	0.02	0.00	0.00	0.00	0.00	0.74	0.16	

- Assumption: $h + \gamma$ and $h + 2\gamma$ are ρ
- $\blacksquare h + 3\gamma$ and $h + 4\gamma$ are $a1 (\pi 2\pi^0)$
- Efficiency of the ML better in all classes except π $2\pi^0$

Outlook



- Improve the efficiency for the π $2\pi^0$
- Maybe changes in the model configuration can improve the efficiency for $\pi \ 2\pi^0$
- Meeting with Jan on Friday for his expertise
- Thesis writing is close to being done, missing only the discussion of the latest results
- Thesis deadline on March 3rd

Backup

Green: weights doubled

