Project A1b

Higgs boson physics with higher order QCD corrections within the Higgs Effective Theory

Pls: Harlander/Melnikov

A1b: Higher Order Higgs within SMEFT

Goal:

Public tool to calculate differential Higgs cross sections at NNLO QCD within SMEFT.

A1b: Higher Order Higgs within SMEFT

Plenty of options to study the Higgs

A1b: Higher Order Higgs within SMEFT

Plenty of options to study the Higgs

A1b: Higher Order Higgs within SMEFT

Radiative corrections can be large

A1b: Higher Order Higgs within SMEFT

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger '14

Find deviations from SM@NNLO: New Physics.

Framework for New Physics analysis: SMEFT

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{x} \frac{f_x}{\Lambda^2} \mathscr{O}_x^{(6)} + \dots$$

Proper analysis requires inclusion of radiative corrections: SMEFT@NNLO. We restrict ourselves to QCD.

A1b: Higher Order Higgs within SMEFT

In A1b, we start with the simplest case: HW production

Caola, Luisoni, Melnikov, Röntsch '18

A1b: Higher Order Higgs within SMEFT

- up to now, the only channel to see $H \rightarrow bb$
- *HW/HZ* ratio sensitive to new physics

Robert Harlander (RWTH Aachen University)

RH, Klappert, Pandini, Papaefstathiou '18

	$1:X^3$	$2:H^6$		$3:H^4D^2$	5 :	$\psi^2 H^3 + h.c$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_H (H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		Q_{HD}	$\left(H^{\dagger}D_{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u)$
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$				Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					•

 $6:\psi^2 XH + \text{h.c.}$

 $7:\psi^2 H^2 D$

Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$Q_{Hl}^{\left(1 ight)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma'$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$Q_{Hl}^{\left(3 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I})$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma'$	
Q_{HB}	$H^{\dagger}H B_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu})$	
$Q_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}$	

A1b: Higher Order Higgs within SMEFT

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$

Robert Harlander (RWTH Aachen University)

appear as D_{μ} or $W_{\mu\nu}$, $B_{\mu\nu}$, $G_{\mu\nu}$

 $Q_W \sim \epsilon_{ijk} W^{i,\nu}_{\mu} W^{j,\rho}_{\nu} W^{k,\mu}_{\rho}$ $W^i_{\mu\nu} = \partial_{\mu}W^i_{\nu} - \partial_{\nu}W^i_{\mu} + g_2\epsilon^{ijk}W^j_{\mu}W^k_{\nu}$

No contribution to WH production

Robert Harlander (RWTH Aachen University)

10

Robert Harlander (RWTH Aachen University)

 $Q_G \sim f_{abc} G^{a,\nu}_{\mu} G^{b,\rho}_{\nu} G^{c,\mu}_{\rho}$

 $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g_3 f^{abc} G^b_\mu G^c_\nu$

contributes at NNLO, no renormalization required

Robert Harlander (RWTH Aachen University)

 $Q_H \sim (H^{\dagger}H)^3$

 $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$

No contribution to WH production

 $Q_{HW} \sim H^{\dagger} H W_{i,\mu\nu} W^{i,\mu\nu}$

Contribute at LO, but no renormalization required

A1b: Higher Order Higgs within SMEFT

 $Q_{HD} \sim (H^{\dagger} D_{\mu} H)^* (H^{\dagger} D^{\mu} H)$

 $G^{a,
u}_{\mu}G^{b,
ho}_{
u}W^{i,\mu}_{
ho}$

no!

 $(H^{\dagger}H)G^{a}_{\mu
u}W^{i,\mu
u}$

A1b: Higher Order Higgs within SMEFT

Contribute at LO,

A1b: Higher Order Higgs within SMEFT

Robert Harlander (RWTH Aachen University)

 $Q_{\psi W} \sim \bar{\psi} \sigma_{\mu\nu} \tau^i \psi H W^{i,\mu\nu}$

require NNLO ren. \rightarrow known!

 $Q_{\psi H} \sim (H^{\dagger}H)(\bar{L}\psi_R H)$

Robert Harlander (RWTH Aachen University)

Contributes at LO, requires NNLO ren. \rightarrow known!

Contributes at NLO...

A1b: Higher Order Higgs within SMEFT

Robert Harlander (RWTH Aachen University)

... at NNLO

contributes at NLO...

A1b: Higher Order Higgs within SMEFT

Robert Harlander (RWTH Aachen University)

...or when decay is taken into account.

In summary, dim6 operators induce the following terms:

A1b: Higher Order Higgs within SMEFT

So far, only NLO analyses:

A1b: Higher Order Higgs within SMEFT

Robert Harlander (RWTH Aachen University)

Greljo, Isidori, Lindert, Marzocca, Zhang '17

Full NLO+PS:

Robert Harlander (RWTH Aachen University)

Alioli, Dekens, Girard, Mereghetti '18

Moving to NNLO:

Robert Harlander (RWTH Aachen University)

Subtraction terms same as in SM.

Caola, Luisoni, Melnikov, Röntsch '18

Renormalization

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$$

Calculate appropriate Green's functions.

Mixing only occurs when operators contribute to the same Green's functions.

No mixing through NLO.

A1b: Higher Order Higgs within SMEFT

in general: $f_i^B = \sum Z_{ij} f_j$

Example with mixing:

Deutschmann, Duhr, Maltoni, Vryonidou '17

A1b: Higher Order Higgs within SMEFT

Plan:

- Calculate WH amplitudes in SMEFT through NNLO. Implement them into existing SM code for NNLO WH.
- Include SMEFT also for decays.
- Study effect of various operators on kinematic quantities.
- Make the code accessible to experimentalists.
- Move on to other Higgs production process.

