C1a: Inclusive semileptonic, rare and radiative decays of **B** Mesons

Tobias Huber, Thomas Mannel, Matthias Steinhauser

Particle Physics Phenomenology after the Higgs Discovery

SFB Kick Off Meeting, March $18^{\rm th}/19^{\rm th}$, 2019

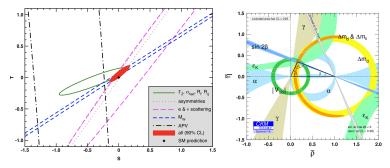
Contents

Introduction

- The role of Flavour Physics
- Heavy Quark Expansion in a Nutshell

Project Plan

- Quark Mass
- Charged Current Semileptonic Decays
- Radiative and Rare Decays


The Role of C1a within the CRC

★ 문 ► ★ 문 ►

The role of Flavour Physics Heavy Quark Expansion in a Nutshell

The role of Flavour Physics

Flavour Physics provides a complementary test of the SM:

Gauge Structure

Flavour Stucture

Indirect searches for new physics with a high sensitivity!

The role of Flavour Physics Heavy Quark Expansion in a Nutshell

ヘロン ヘアン ヘビン ヘビン

Heavy Quark Expansion in a Nutshell

Inclusive Decays

$$d\Gamma = d\Gamma_0 + d\Gamma_1/m_Q + d\Gamma_2/m_Q^2 + \cdots$$

with

$$d\Gamma_i = \sum_k C_i^{(k)}(lpha_{s}, \mu/m_Q) \langle O_i^{(k)}
angle_\mu$$

• $O_i^{(k)}$: Local operator(s) of dimension i + 3

⟨...⟩_μ: Forward matrix element, normalized at μ
 C^(k)_i(α_s, μ/m_Q): (perturbative) Wilson coefficient

Heavy Quark Expansion parameters

- *d*Γ₀ is the decay of a free quark ("Parton Model")
- *d*Γ₁ vanishes due to Heavy Quark Symmetries
- $d\Gamma_2$ is expressed in terms of two parameters

$$\begin{array}{lll} 2M_{H}\mu_{\pi}^{2} & = & -\langle H(v)|\bar{Q}_{v}(iD)^{2}Q_{v}|H(v)\rangle \\ 2M_{H}\mu_{G}^{2} & = & \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(iD^{\nu})Q_{v}|H(v)\rangle \end{array}$$

μ_π: Kinetic energy and μ_G: Chromomagnetic moment
dΓ₃ two more parameters

$$2M_{H}\rho_{D}^{3} = -\langle H(v)|\bar{Q}_{v}(iD_{\mu})(ivD)(iD^{\mu})Q_{v}|H(v)\rangle$$

$$2M_{H}\rho_{LS}^{3} = \langle H(v)|\bar{Q}_{v}\sigma_{\mu\nu}(iD^{\mu})(ivD)(iD^{\nu})Q_{v}|H(v)\rangle$$

 ρ_D : Darwin Term and ρ_{LS} : Spin-Orbit Term

ヘロン 人間 とくほ とくほ とう

3

A few Remarks

- Local OPE is well established for $b
 ightarrow c \ell \bar{
 u}$
- For $b \rightarrow u \ell \bar{\nu}$ a light-cone expansion has to be used
- For $b \to s\gamma$ and $b \to s\ell\ell$ some terms do not have an OPE: Charm loops

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

Project Plan

- WA1: Kinetic Mass to N³LO accuracy
- WA2: Charm Quark Mass Dependence of $B \rightarrow X_s \gamma$
- WA3: Perturbative Corrections to higher order terms in the 1/m expansion
- WA4: Improvement of the HQE parameters
- WA5: Increasing the precision of $B \to X_{s/d} \ell \ell$
- WA6: Multi Parton Contributions to $B \rightarrow X_{s/d\gamma}$
- WA7: Re-Summations of the HQE
- WA8: Realistic Models of Duality Violations

Huber

Mannel

Steinhauser

<ロト <回 > < 注 > < 注 > 、

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

Quark Mass (WA1 and WA2)

Strong dependence on the quark mass:

$$d\Gamma \propto m_b^5 G_F^2 \left(c_0 + rac{lpha_s}{\pi} c_1 + \dots + \mathcal{O}(1/m)
ight)$$

• Pole mass m_b^{pole} :

Renormalon ambiguity of order Λ_{QCD} Renders the $1/m_b$ expansion undetermined

• $\overline{\text{MS}}$ mass $m_b^{\overline{\text{MS}}}(\mu)$:

Short-distance mass (no renormalon) Useful only at scales $\mu > m_b$

• Kinetic Mass *m*^{kin}:

Short-distance mass (no renormalon) Valid for $\mu < m_b$

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロト 人間 ト ヘヨト ヘヨト

Kinetic Mass

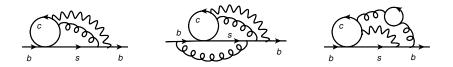
$$m^{ ext{kin}}(\mu) = m_b^{ ext{pole}} - \Lambda_{ ext{QCD}}|_{ ext{pert}} - rac{\mu_\pi^2|_{ ext{pert}}}{2m^{ ext{kin}}}$$

The parameters $\Lambda_{QCD}|_{pert}$ and $\mu_{\pi}^2|_{pert}$ are obtained from the (perturbative) evaluation of the correlator

$$T(q_0,ec{q}\,) = rac{i}{2m_Q}\int \mathrm{d}^4x\, e^{-iqx} \langle Q|TJ(x)J^\dagger(0)|Q
angle$$

Project Goal:

Evaluate the relation between m^{kin} and m^{pole}_{b} to NNNLO


 \rightarrow Improvement of the V_{cb} determination

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロア 人間 アメヨア 人口 ア

Charm Quark Mass Dependence of $B \rightarrow X_s \gamma$

The $O_{1/2} - O_7$ term depend on the charm mass:

Project Goal: Compute the $O_{1/2} - O_7$ term to NNLO \rightarrow Improvement of $B \rightarrow X_s \gamma$

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロト ヘアト ヘビト ヘビト

CC Semileptonics (WA3, WA4, WA7 WA8)

Various Aspects of the Heavy Quark Expansion

- Perturbative Corrections at higher orders in 1/m
- Improvement of the HQE Parameters
- Resummations of the HQE
- Duality Violation

ヘロト ヘアト ヘビト ヘビト

Perturbative Corrections at higher orders in 1/m

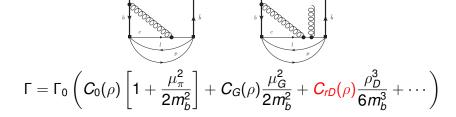
Known are

- leading order: $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_s^2)$
- $\mu_{\pi}^2 \alpha_s$ and $\mu_G^2 \alpha_s$
- Anything else only at tree level

Project Goal 1:

Compute the $\mathcal{O}(\alpha_s)$ contributions at $1/m_b^3$

 \rightarrow Improvement of the V_{cb} determination


Project Goal 2:

Include the QCD corrections to higher orders using RPI

 \rightarrow Improvement of the V_{cb} determination

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

First results on $\rho_D \alpha_s$ (total rate) (ThM, Pivovarov, QFET 2018-23)

$$C_{rD} = -57.1588 + \frac{\alpha_s}{4\pi} (-56.5941C_A + 446.793C_F)$$

= -57.1588 + $\frac{\alpha_s}{4\pi} (425.942)$
= -57.1588(1 - $\frac{\alpha_s}{4\pi} 7.4519...)$
= -57.1588(1 - 0.12)

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

・ 同 ト ・ ヨ ト ・ ヨ ト …

Improvement of the HQE parameters

Current status

Problem: Number of HQE parameters in higher orders!

- 4 up to $1/m^3$
- 13 up to $1/m^4$ (tree level)
- 31 up to order $1/m^5$ (tree level)
- Factorial Proliferation

Reparametrization Invariance: Reduction (ThM, Vos 2018)

• 8 Parameters up to $1/m_b^4$

Still there will be a factorial proliferation ... Need an estimate of the matrix elements

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロト ヘアト ヘビト ヘビト

Preliminary work in QFET (Urattsev 2013, Heinonen, ThM 2018) Lowest Lying State Saturation Ansatz (LLSSA): e.g. $\langle B|\bar{h}_{v}(iD)^{2}(iD)^{2}h_{v}|B\rangle \sim \langle B|\bar{h}_{v}(iD)^{2}h_{v}|B\rangle \langle B|\bar{h}_{v}(iD)^{2}h_{v}|B\rangle \sim \mu_{\pi}^{4}$ This can be inferred from the sum rule:

$$\begin{split} \sum_{k=0}^{\infty} \sum_{n} (2\pi)^{3} \delta^{3}(\boldsymbol{p}_{n}^{\perp}) \left(\frac{-\epsilon_{n}}{\omega}\right)^{k} \left\langle \boldsymbol{B}(\boldsymbol{p}_{B}) | \bar{\boldsymbol{b}}_{v} \mathcal{P}_{1} \boldsymbol{Q}_{v} | \boldsymbol{n} \right\rangle \left\langle \boldsymbol{n} | \bar{\boldsymbol{Q}}_{v} \mathcal{P}_{2} \Gamma \boldsymbol{b}_{v} | \boldsymbol{B}(\boldsymbol{p}_{B}) \right\rangle \\ = \sum_{k=0}^{\infty} \left\langle \boldsymbol{B}(\boldsymbol{p}_{B}) | \bar{\boldsymbol{b}}_{v} \mathcal{P}_{1} \left(\frac{i \boldsymbol{v} \cdot \boldsymbol{D}}{\omega}\right)^{k} \left(\frac{1+v}{2}\right) \mathcal{P}_{2} \Gamma \boldsymbol{b}_{v} | \boldsymbol{B}(\boldsymbol{p}_{B}) \right\rangle \end{split}$$

where $\mathcal{P}_{1,2}$ are products of $(iD)_{\perp}$ Project Goal: Study the QCD corrections to the sum rule.

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロン 人間 とくほ とくほ とう

1

HQE Resummations and Duality Violations

Higher orders in 1/m: Partial Resumations of the HQE

- Partial Resumations of the HQE (ThM, Vos 2018)
- Duality Violations:
 - 1/m Expansion as an asymptotic series

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロト ヘアト ヘビト ヘビト

ъ

Radiative and Rare Decays

Precision Calculations of $B \rightarrow X_{s/d}\gamma$ and $B \rightarrow X_{s/d}\ell\ell$:

- Increasing the precision in $B \to X_{s/d} \ell \ell$
- Multi-Parton contributions to $B \rightarrow X_{s/d}\gamma$

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

ヘロト ヘアト ヘビト ヘビト

Increasing the precision in $B o X_{s/d} \ell \ell$

• Revisiting the *cc̄* and *uū* resonances

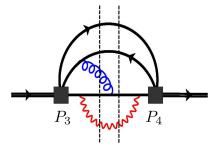
- Improving the Krüger Sehgal Ansatz for the charm loop (ongoing)
- Include non-factorizable contributions
- Introduce an m_X cut: Shape function region
 - SCET analysis
 - Power corrections
- CP Violation in $B \rightarrow X_d \ell \ell$
- QED corrections to $B \to X_{s/d} \ell \ell$

•
$$\ell = \mu$$
 vs. $\ell = e$

Quark Mass Charged Current Semileptonic Decays Radiative and Rare Decays

くロト (過) (目) (日)

э


Multi-Parton contributions to $B \rightarrow X_{s/d} \gamma$

Preliminary work:

- Huber, Poradzinski, Virto 2014: NLO corrections to $b
 ightarrow sqar{q}\gamma$
- Huber, Qin, Vos 2018: Five particle contributions $b
 ightarrow sqar{q}\ell\ell$

Project goals:

Complete the missing NLO piece

The Role of C1a within the CRC

Questions within C1:

- Is the kinetic scheme reparametrization invariant?
- If not, can it be modified in a RP invariant fashion?
- IS scheme vs. kinetic scheme
- Can we set up an alternative determination of inclusive V_{cb}?
- How can we improve the inclusive V_{ub} determination?

Questions within C:

- Comparison between different mass schemes
- Link to the NP models in C3
- Exclusive sum vs. inclusive calculations

Overall Questions

- Methods
- Collider vs. Flavour: Top Bottom link

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○