Air shower simulations with CORSIKA 8

Maximilian Reininghaus

Part I: Current status of the project

Building blocks of C8

Worldbuilding

- world entirely composable by user
- different materials/density models in different regions of space
- currently available:
 - homogeneous
 - exponential flat & curved ("sliding planar approximation")
- easily extensible by own models

Process classes

Cascade step

- determine step-length
- apply continuous processes
- perform interaction/decay
- apply secondary processes

Part II: First results & comparison

see D. Melo, MR, F. Riehn, R. Ulrich, PoS ICRC2019, 399

Setup

- mostly equivalent setups for C8, C7.64, AIRES 19.04
- flat exponential atmosphere 878 g/cm²
- propagation of hadrons & muons
- vertical proton showers @ 10 PeV & 1 EeV

	HE model	LE model
CORSIKA 8 CORSIKA 7	SIBYLL 2.3c	UrQMD 1.3
AIRES 18.10		Hillas Splitting Algorithm
	transition at 55 GeV	

Muon longitudinal profle

Muon energy spectrum

Energy spectra at 7 km

Muon LDF

Summary

- CORSIKA 8 is alive and kicking
- hadrons and muons in air already possible
- first results are comparable to other codes
- discrepancies will likely shed light on muon production

Backup

UrQMD cross-sections

Sliding planar approximation

Worldbuilding

- geometric primitives furnished with material properties
- assembled in a tree representing containment

under the hood

statically typed units

 \rightarrow compile-time dimensional analysis

```
MassDensityType rho = 4_g /
    cube(cm);
auto length = 5.4_m;
auto X = length * rho
// → GrammageType
```

conversion between SI & natural units provided!

Definition of new CS by: - rotation and/or translation

- reference CS

Vectors & points

automatic transformations into common CS when necessary: Vector<length> v(cs1,...), w(cs2,...); auto u = v + w;

Units

- Compile-time dimensional analysis based on *PhysUnits C++11*
- Example:

MassDensityType rho = 4_g / cube(cm); auto length = 5.4_m; fully integrated into geometry hangework: Wector<speed_moggeType

conversion between SI & natural units provided!

Profiling

