

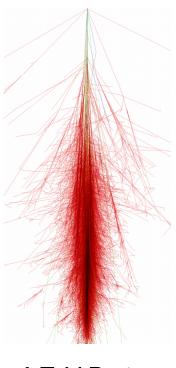
Simulation of Extensive Air Showers with Deep Neural Networks

Marcel Köpke, supervised by Ralph Engel and Markus Roth HIRSAP Workshop Karlsruhe (2019)

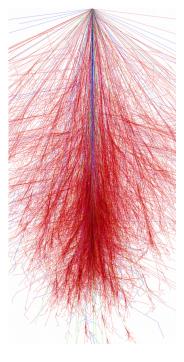
INSTITUTE FOR NUCLEAR PHYSICS (IKP), FACULTY OF PHYSICS KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

CORSIKA 7 [1]

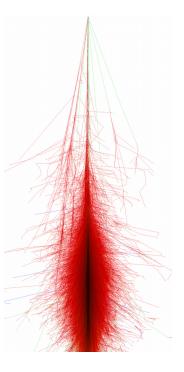
- Extensive air shower Monte Carlo simulation framework
- Different types of interaction models (EPOS-LHC, QGSJET, SIBYLL, ...)



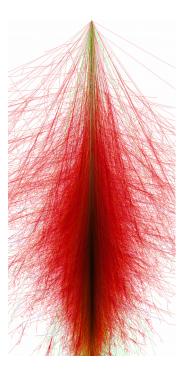
1 TeV Proton



1 TeV Iron

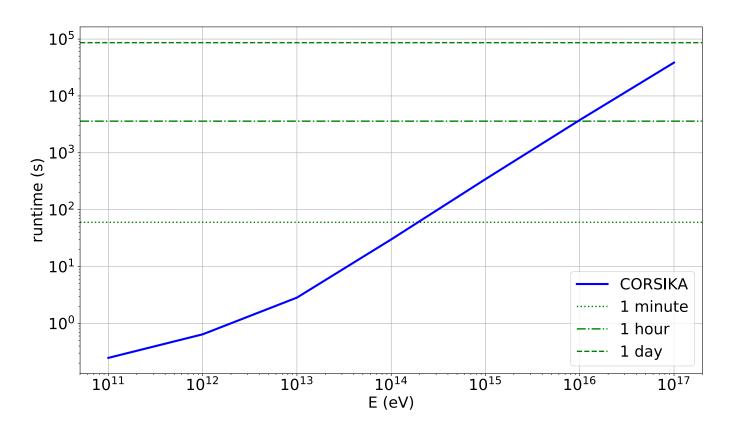


10 TeV Proton



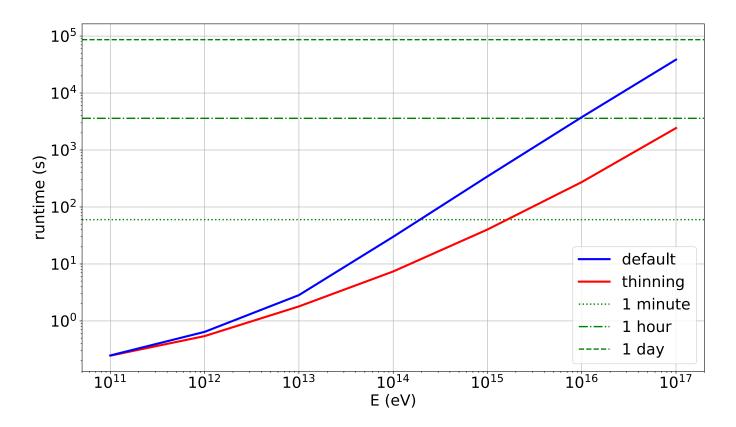
10 TeV Iron

Motivation



The time complexity of CORSIKA 7 simulations rises approximately linearly with the primary particle energy

Thinning

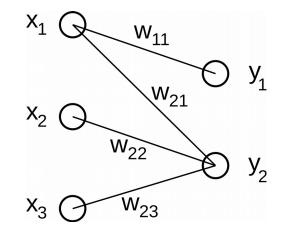


- Reduces (effective) particle content by particle-aggregation
- Preserves shower properties to leading order
- Reduces shower-to-shower fluctuations

Why Neural Networks?

- Can run on specialized **hardware** (GPU / TPU)
- Automatic **parallelization** (TensorFlow)
- Automatic reduction to essential features
- Training can fix meta-parameters
- Adjustable accuracy possible

Neural Networks



$$y_{1} = w_{11} \cdot x_{1} + w_{12} \cdot x_{2} + w_{13} \cdot x_{3}$$

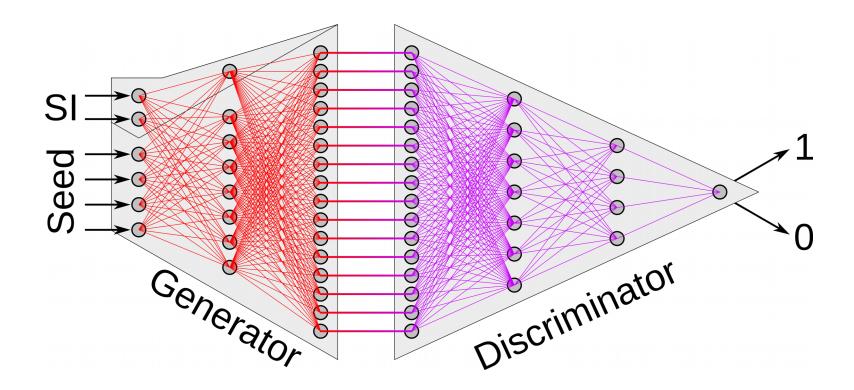
$$y_{2} = w_{21} \cdot x_{1} + w_{22} \cdot x_{2} + w_{23} \cdot x_{3}$$

$$\vec{y} = w \cdot \vec{x} \ (+\vec{b})$$

$$\vec{f} = a(\vec{y})$$

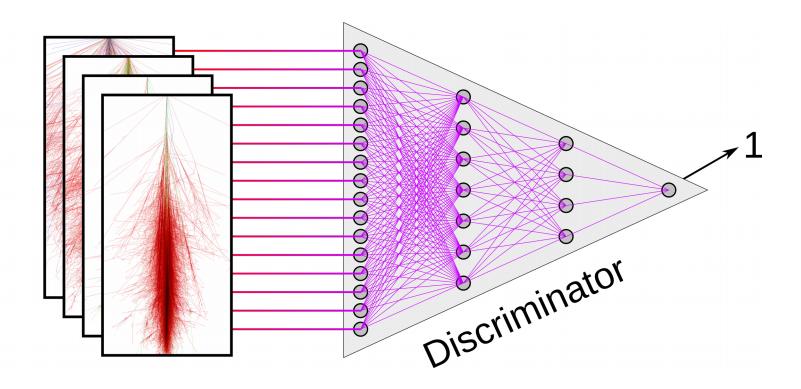
- Combination of linear and non-linear functions
- Training via loss function / metric on data pairs (\vec{x}, \vec{t})
- $L = L(\vec{f}(\vec{x}), \vec{t}) \implies w' = w \alpha \cdot \nabla_w L$

Generative Adversarial Neural Network (GAN)



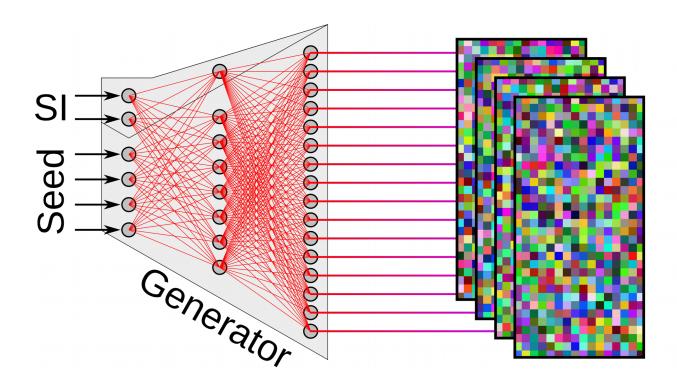
- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

Training: Discriminator (Part 1)



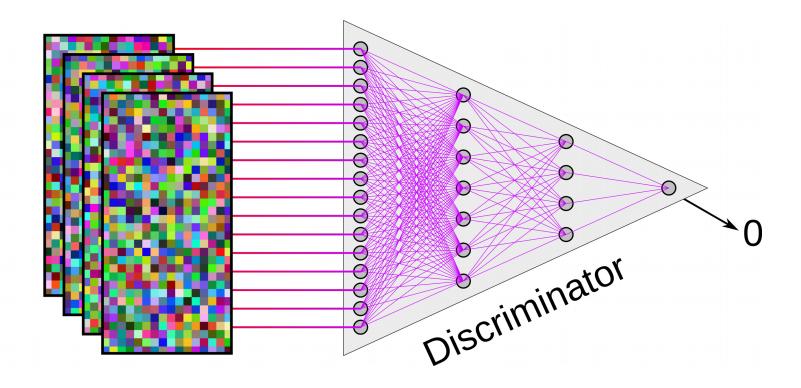
- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

Training: Sampling



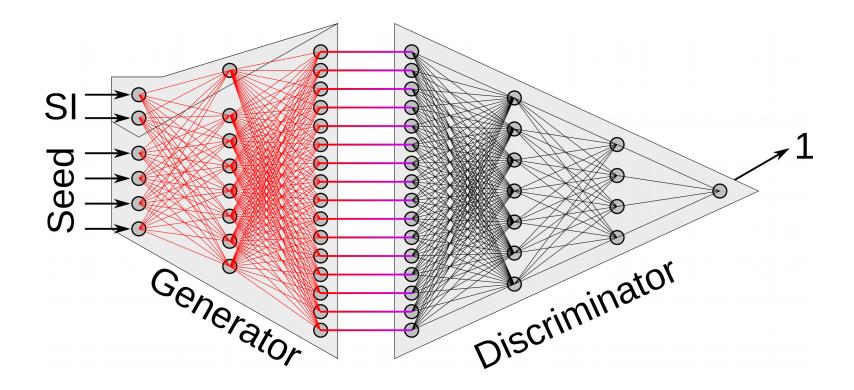
- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

Training: Discriminator (Part 2)



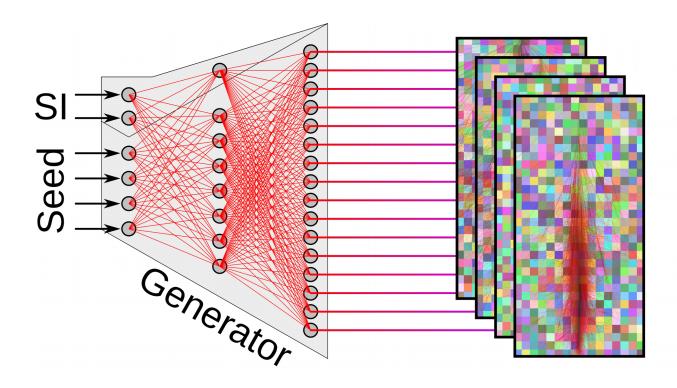
- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

Training: Generator

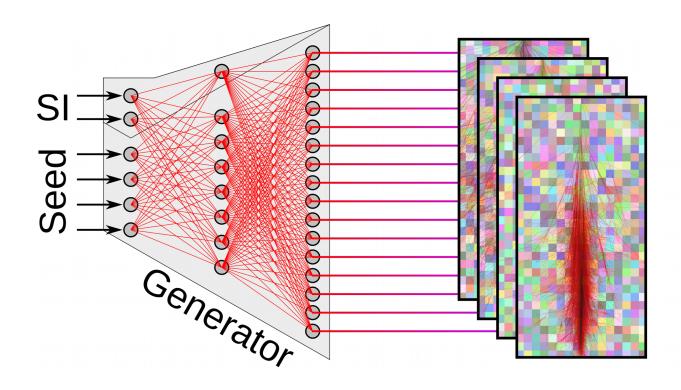


- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

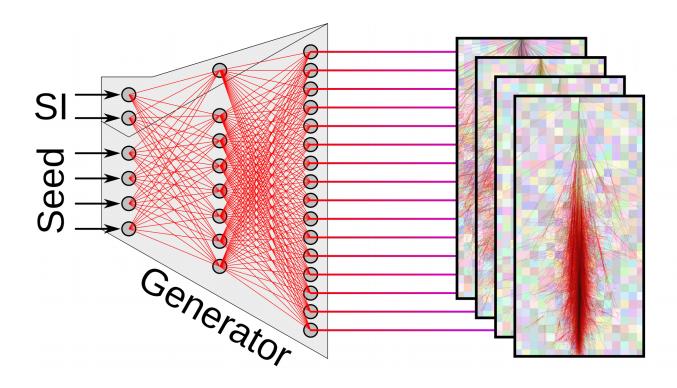
Deep Neural Networks



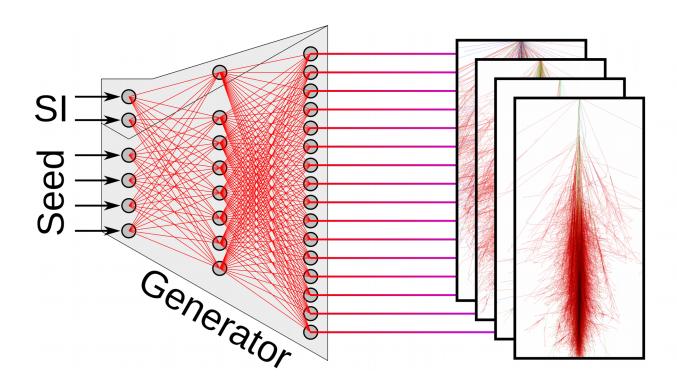
- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator



- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator



- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

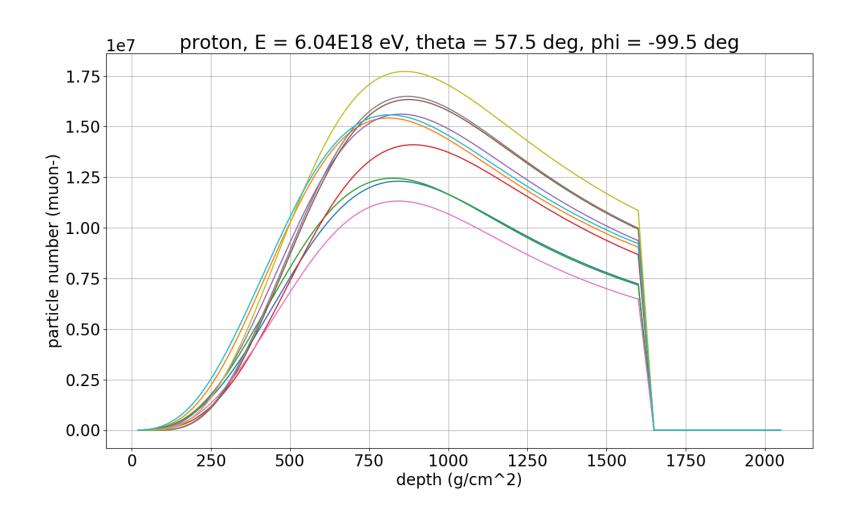


- Train discriminator on real (1) and generated (0) data
- Train generator to outsmart the discriminator

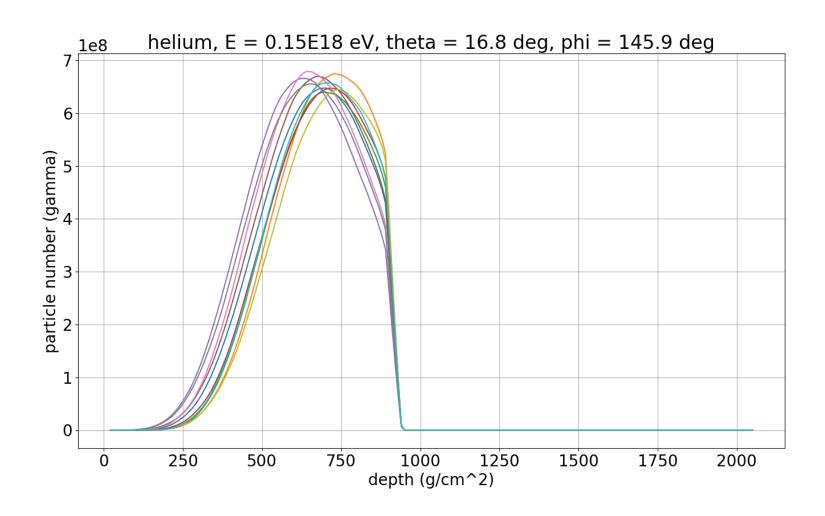
First Test (CONEX)

- CONEX: Hybrid Extenisve Air Shower Simulation
 - first: Monte Carlo until energy threshold (3D)
 - then: cascade equation solver (1D)
 - provides longitudinal profile only
 - runtime: seconds minutes
- Configuration:
 - E = 1E17 ... 1E19 eV
 - Zenith = 0 ... 65 deg
 - Azimuth = -180 ... 180 deg
- Generated ~187k datapoints

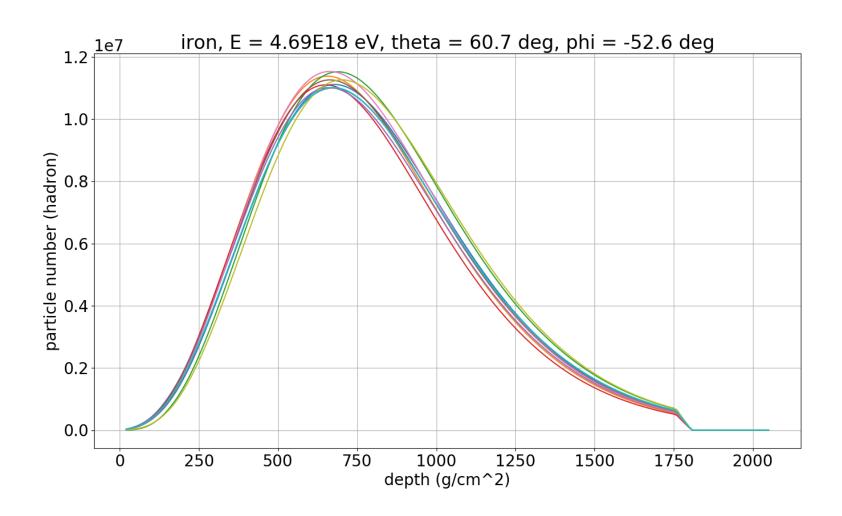
Shower-to-Shower Fluctuations



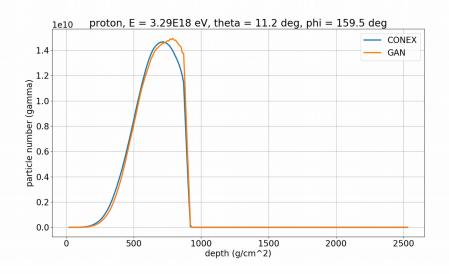
Shower-to-Shower Fluctuations

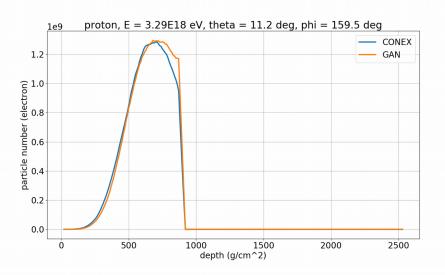


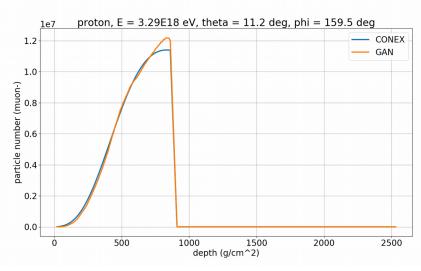
Shower-to-Shower Fluctuations

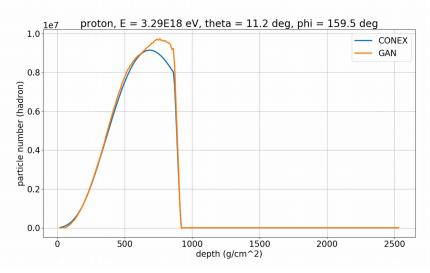


CONEX vs. GAN



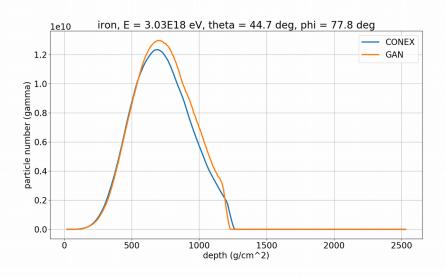


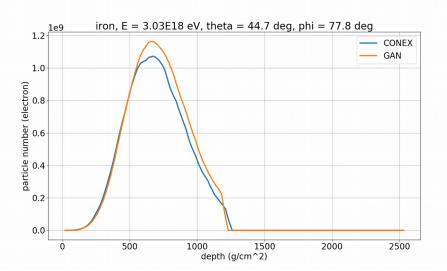


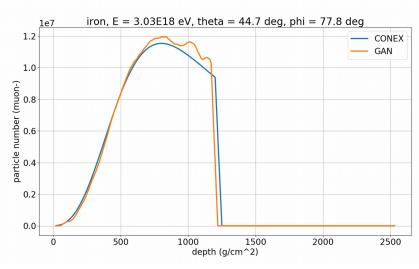


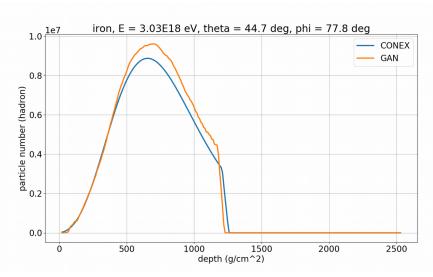
23.09.2019

CONEX vs. GAN



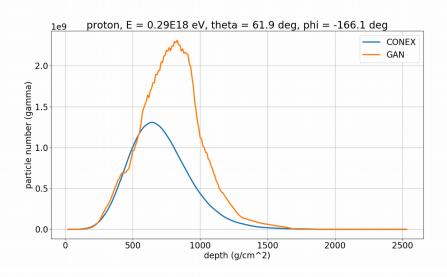


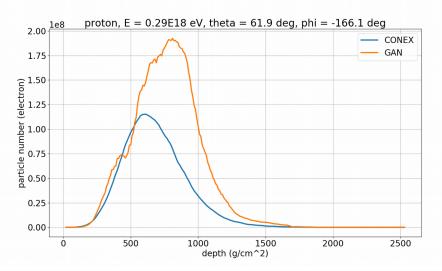


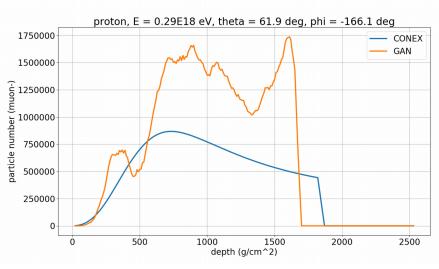


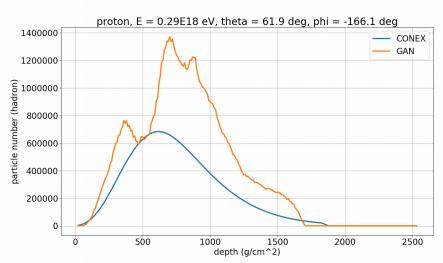
23.09.2019

CONEX vs. GAN

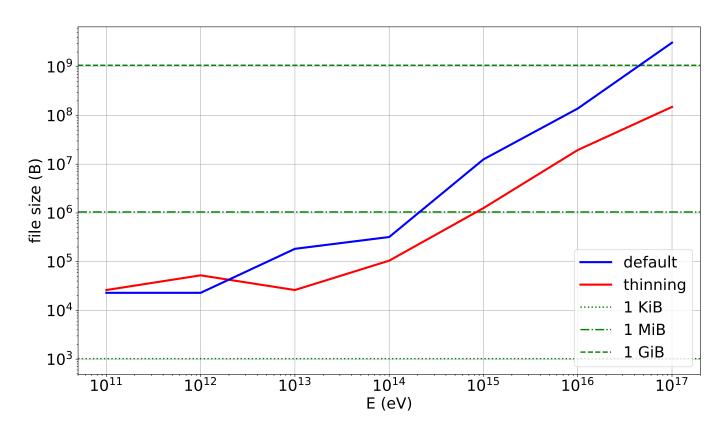








Shower Library



- Shower library required for analyses and model training
- Trained model = effective compression of shower library

Summary

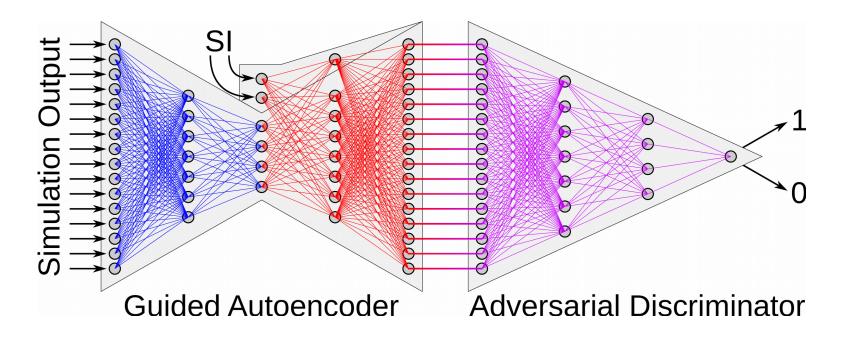
- Deep Neural Networks can serve as an effective simulation heuristic
- Can improve runtime and (effective) data compression
- Can employ specialized hardware
- Trained models can be conditioned on meta-parameters
- Adjustable accuracy is possible
- ErUM: Innovative Digitale Technologien zur Erforschung von Universum und Materie

Deep Neural Networks

Backup

Fast Implicit Simulation Heuristic (FISH)

Autoencoder with Adversarial Metric

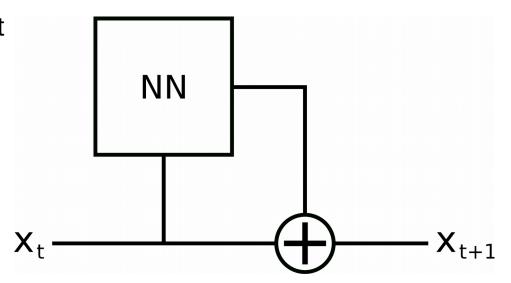


- Simulation Input (SI) can be extended with meta-parameters
- Discriminator can be refined with real measurements

Deep Neural Networks

Adjustable Accuracy [2]

ResNet



Translate to ordinary differential equation (ODE)

$$x_{t+1} = x_t + f(x_t, \theta_t) \Rightarrow \frac{dx(t)}{dt} = f(x(t), t, \theta)$$

- Solve with standard ODE solver
- Adapt solver accuracy on the fly (training: high, inference: low)

Working Example [3]

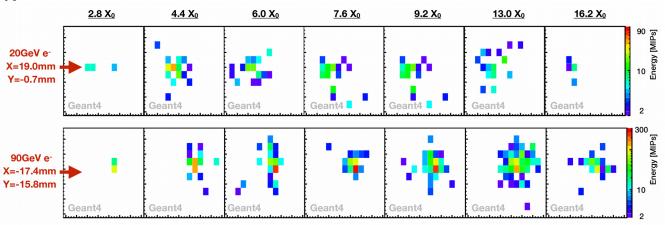
 "Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network" - Martin Erdmann, Jonas Glombitza, Thorben Quast – arXiv: 1807.01954

Some Highlights:

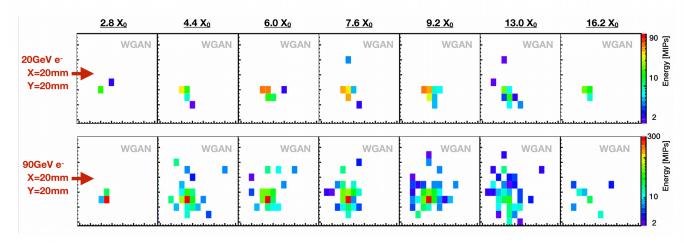
- Wasserstein GAN for HEP Geant4 simulations
- Interpolation between training energies
- Up to x6660 faster than Geant4
- Runtime is independent of particle energy

Geant4 vs. Wasserstein GAN [3]

Geant4:



Wasserstein GAN:



References

Title picture:

Karlsruhe Castle - Meph666 [CC BY-SA 3.0] https://commons.wikimedia.org/wiki/File:Karlsruhe-Schloss-meph666-2005-Apr-22.jpg

- Backup picture:
 Photo by Anthony from Pexels
- [1] CORSIKA 7: https://www.ikp.kit.edu/corsika/
- [2] "Neural Ordinary Differential Equations" Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud – arXiv: 1806.07366

References

[3] "Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network" - Martin Erdmann, Jonas Glombitza, Thorben Quast – arXiv: 1807.01954