Source Models for Particles of Ultra-High Energy

HIRSAP Workshop 2019

M. Unger (KIT)

.

UHECR Source Candidates

Propagation of UHECRs in Photon Fields

[8 of 34]

Propagation of UHECRs in Photon Fields

<u>GZK:</u> S(P+Xcm)= (mp+mr)² -> Ep~ lo²⁰eV for Ey=kg(2.7K)

Propagation of UHECRs in Photon Fields

[10 of 34]

Proton Source Model ("Dip Model")

Propagation of UHE Protons

Propagation of UHE Protons

Propagation of UHE Protons

Proton Source Model ("Dip Model")

Proton Source Model ("Dip Model")

ELLAX = 1022 eV, Dmin=1...100 Mpc, source evolution: SFR or AGN

Secondaries in Proton Source Model

Secondaries in Proton Source Model

source evolution ~ (1+2)m

Mixed-Composition Model

Propagation of UHE Nuclei

Lovente-Jector T= EA

D. Allard, APP 39 (2012) 33

Propagation of UHE Nuclei

"Peters Cycle" at Source

[22 of 34]

Mixed-Composition Model

Origin of Ankle and EeV Protons?

[24 of 34]

Photonuclear Interactions in Source Environment?

MU, G. Farrar, L. Anchordoqui, PRD 92 (2015) 123001 and M. Muzio, MU, G. Farrar arXiv:1906.06233 see also Globus+15, Biel+17, Kachelriess+17, Supanitsky+18

Photonuclear Interactions in Source Environment?

analytic example: full spallation of nucleus A, diffusion $\tau_{\rm esc} \propto E^{\alpha}$, $\tau_{\rm int} \propto E^{\beta}$

Photonuclear Interactions in a "peaky" Photon Field

 28 Si in a broken power-law photon field, $\alpha = \frac{3}{2}, \beta = -1$ and $\varepsilon_0 = 0.11 \text{ eV}$

[27 of 34]

8

Photonuclear Interactions in a "peaky" Photon Field

Near-universal "L-curve" depending mostly on peak position

- ▶ injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K

•
$$\lambda_{
m esc} = \mathbf{1} imes \lambda_{
m int}$$
 at $10^{19} \ {
m eV}$

- ▶ injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K

•
$$\lambda_{
m esc} = 10 imes \lambda_{
m int}$$
 at $10^{19} \; {
m eV}$

- ▶ injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=250 K

•
$$\lambda_{
m esc} = 100 imes \lambda_{
m int}$$
 at $10^{19} \; {
m eV}$

- ▶ injected mass: Fe
- $\blacktriangleright \ \gamma = -1$
- $E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$
- photon field: black body, T=150 K

•
$$\lambda_{
m esc} = 100 imes \lambda_{
m int}$$
 at $10^{19} \; {
m eV}$

- ▶ injected mass: Fe
- $\blacktriangleright \ \gamma = -1$

•
$$E_{\rm max}({\rm Fe}) = 10^{19.8} \, {\rm eV}$$

 photon field: black body, T=50 K

•
$$\lambda_{
m esc} = 100 imes \lambda_{
m int}$$
 at $10^{19} \ {
m eV}$

Fit of Spectrum and Composition At Earth (single mass)

Fit of Spectrum and Composition At Earth (Galactic Mix)

Secondaries vs. Photon Field Temperature

[33 of 34]

Summary of Generic Source Models of UHECRs

dip model (pure proton)

- elegant, very few parameters
- disfavoured by secondaries (u, γ)
- excluded by UHE composition

mixed composition

<u>.</u>

::

÷

Ð

...

(<u>.</u>...

fits UHE composition and flux low secondary fluxes \rightarrow not excluded low secondary fluxes \rightarrow hard to detect hard injection spectrum $\gamma \approx 1$ ad-hoc composition fractions ad-hoc low-E light component needed

- photonuclear interactions at source
 - :::fits UHE composition and flux:::works with Galactic composition::explains ankle and low-E protons::detectable secondary fluxes (falsifiable)::hard injection spectrum $\gamma \approx 1$::source properties: additonal doF