

Karlsruhe, HIRSAP Workshop, September 2019

Ultra-high-energy cosmic rays above 10¹⁸ eV

What are their sources?

How are they accelerated?

How do they change as they propagate to Earth?

All with dependence on charge/mass!

Propagation Energy loss

Near-sightedness

GZK horizon of \sim 75 Mpc

Beyond this, universe is generally opaque to UHECRs

Magnetic deflection

Energy spectrum

Energy spectrum Composition scenarios

Pierre Auger Observatory

Location:Malargüe,Height:1450 meteAtm. Depth:860 g/cm²Energy Threshold:10^{17.5} eV

Malargüe, Mendoza, Argentina 1450 meters 860 g/cm²

Fluorescence Detector (FD) 27 telescopes, 15% duty cycle

Surface Detector (SD) 1660 water-cherenkov detectors 100% duty cycle

Pierre Auger Observatory

Location:Malargüe, MeHeight:1450 metersAtm. Depth:860 g/cm²Energy Threshold:10^{17.5} eV

Malargüe, Mendoza, Argentina 1450 meters 860 g/cm²

Fluorescence Detector (FD) 27 telescopes, 15% duty cycle

Surface Detector (SD) 1660 water-cherenkov detectors 100% duty cycle

Extensive air shower observables

Shower profile

14/34

Composition fits with X_{max}

Composition fits with X_{max}

Mass Observables for Surface Detector

more electrons

 4 m² Scintillator Surface Detector atop each of the existing Water-Cherenkov Detectors

Disentangle **muonic** and **electromagnetic** shower components using differing responses 4 m² Scintillator Surface Detector atop each of the existing Water-Cherenkov Detectors

Disentangle **muonic** and **electromagnetic** shower components using differing responses

- 4 m² Scintillator Surface Detector atop each of the existing Water-Cherenkov Detectors
- A small PMT for extended dynamic range and improved 12-bit 120 MHz electronics for more precisely measured waveforms
- An Underground Muon Detector covering 23.5 km² for direct muon measurements
- A radio antenna atop each SSD+WCD to extend mass sensitive sky coverage and exposure

Disentangle **muonic** and **electromagnetic** shower components using differing responses

- 4 m² Scintillator Surface Detector atop each of the existing Water-Cherenkov Detectors
- A small PMT for extended dynamic range and improved 12-bit 120 MHz electronics for more precisely measured waveforms
- An Underground Muon Detector covering 23.5 km² for direct muon measurements
- A radio antenna atop each SSD+WCD to extend mass sensitive sky coverage and exposure

Objetives:

- → Elucidate the mass composition and the origin of the flux suppression at the highest energies
- → Search for a flux contribution of protons up to the highest energies
- → Study extensive air showers and hadronic multi-particle production

Deconvolving Detector Responses

$$\begin{pmatrix} E_{\rm scin} \\ E_{\rm wcd} \end{pmatrix} = \begin{pmatrix} f^{\gamma,e^{\pm}} & f^{\mu^{\pm}} \\ 1 - f^{\gamma,e^{\pm}} & 1 - f^{\mu^{\pm}} \end{pmatrix} \begin{pmatrix} E^{\gamma,e^{\pm}} \\ E^{\mu^{\pm}} \end{pmatrix}$$
$$f^{\gamma,e^{\pm}} = \frac{E_{\rm scin}^{\gamma,e^{\pm}}}{E^{\gamma,e^{\pm}}} \quad \swarrow e^{\pm} \quad \swarrow f^{\mu^{\pm}} = \frac{E_{\rm scin}^{\mu^{\pm}}}{E^{\mu^{\pm}}}$$

By means of inversion:

$$S_{\text{wcd}}^{\mu^{\pm}} = -uS_{\text{scin}} + (1-v)S_{\text{wcd}}$$
$$S_{\text{wcd}}^{\gamma,e^{\pm}} = uS_{\text{scin}} + vS_{\text{wcd}}$$

$$S_{\rm scin} = C_{\rm scin} E_{\rm scin}$$
$$S_{\rm wcd} = C_{\rm wcd} E_{\rm wcd}$$

Surface Scintillator Detector

Photomultiplier tube

24/34

not to scale

Flashlight shined onto one scintillator bar end reveals fiber routing

Photo credit: Darko Veberic

Characterization and validation

Centimeter precision muon telescope

Signal response

Characterization and validation

Timing response

Engineering Array

- Deployed September 2016
- 12 prototype detectors
- Test bed for
 - Scintillator module design
 - Upgrade electronics
 - WCD small PMT
 - Etc.

SSD Production/Deployment

Production performed at 5 European institutes (starting Oct. 2017)

Quad-hybrid AugerPrime Event

Thanks to Felix Schlüter, Ana Botti, and Alvaro Taboada for providing the Radio, UMD, and SSD data!

Radio Upgrade

Antenna to be placed on top of each WCD/SSD

Extends composition sensitivity to more inclined showers increasing exposure and sky coverage

Prototype antenna installed in the AugerPrime engineering array

Underground Muon Detector

Plastic scintillator + WLS fibers

- Buried scintillator detectors for direct muon counting
- Counter and integrator modes
- Cover an area of 23.5 km²
- Provides valuable cross check on WCD+SSD muon reconstruction

Summary

- UHECR sources (type, distribution, and internal mechanisms) largely remain a mystery
- Shape and features of energy spectra give clues but impact of photo-disintegration and photo-pion production yet to be properly understood
- primary mass measurement needed

AugerPrime

- Will provide means to reconstruct mass with 100% duty cycle
- Scintillator detector response studied and well understood
- Design validated in the field through engineering array and pre-production array measurements. Absolute calibration underway.
- First high-energy measurements as deployment underway

UHECR Acceleration

Scintillator & WLS Fibers

