On two-loop corrections to the Higgs trilinear coupling in models with extended scalar sectors

Johannes Braathen

based on Phys. Lett. B796 (2019) 38–46, and work in preparation with **Shinya Kanemura**

> KIT-NEP'19 Workshop Karlsruhe, Germany October 8, 2019

Outline

- 1. Introduction: why and how we study *λhhh*
- 2. Non-decoupling effects and state-of-the-art calculations
- 3. Our calculation in the 2HDM
- 4. Some numerical results

INTRODUCTION

Probing the shape of the Higgs potential

 \triangleright Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know:

- \rightarrow the location of the FW minimum: $v \sim 246$ GeV
- \rightarrow the curvature of the potential around the EW minimum: $m_h \simeq 125$ GeV

However what we still don't know is the **shape** of the Higgs potential, which **depends on** *λhhh*

 \blacktriangleright λ_{hhh} determines the nature of the EWPT!

 \Rightarrow $\mathcal{O}(20-30\%)$ deviation of λ_{hhh} from its SM prediction needed to have a strongly first-order EWPT \rightarrow necessary for EWBG [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

Consistently studying Higgs properties

- \blacktriangleright Higgs trilinear coupling appears in Higgs decays, Higgs pair production, etc.
- In models where m_h can be computed, λ_{hhh} should be computed to same level of accuracy, for consistent interpretation of experimental data

Alignment with or without decoupling

- \triangleright Aligned scenarios already seem to be favoured \rightarrow Higgs couplings are SM-like at **tree-level**
- \triangleright Non-aligned scenarios (*e.g.* in 2HDMs) could be almost entirely excluded in the close future using synergy of HL-LHC and ILC!
	- \rightarrow Alignment **through decoupling**? or alignment **without** decoupling?
- If alignment without decoupling, Higgs couplings like λ_{hhh} can still exhibit large deviations from SM predictions because of **BSM loop effects** \rightarrow still allowed by experimental results

Current limits on $\kappa_{\lambda} \equiv \lambda_{hhh}/\lambda_{hhh}^{\rm SM}$ are (at 95% CL)

. Double *h* production: −5*.*0 *< κ^λ <* 12*.*1 (ATLAS) and −11 *< κ^λ <* 17 (CMS) see [ATL-PHYS-PROC-2018-117] (ATLAS), [CMS-HIG-17-008] (CMS) $8,0000000$ $8,000000000$ 8.0000000 t/b t/b t/b \overline{H}^* 8,00000000 0000000 $8,0000000$

. Single *h* production: −3*.*2 *< κ^λ <* 11*.*9 (ATLAS) see [ATL-PHYS-PUB-2019-009] (ATLAS)

Current experimental limits

 \triangleright Current limits on $\kappa_{\lambda} \equiv \lambda_{hhh}/\lambda_{hhh}^{\text{SM}}$ are (at 95% CL)

Double *h* production: $-5.0 < \kappa_{\lambda} < 12.1$ (ATLAS) and $-11 < \kappa_{\lambda} < 17$ (CMS) Single *h* production: $-3.2 < \kappa_{\lambda} < 11.9$ (ATLAS)

see [ATL-PHYS-PUB-2019-009], [ATL-PHYS-PROC-2018-117] (ATLAS), [CMS-HIG-17-008] (CMS)

Future measurement prospects

- \triangleright <code>HL-LHC</code> with 3 ab $^{-1}$ could reach $0.1 < \lambda_{hhh}/\lambda_{hhh}^{\rm SM} < 2.3$
- *.* ILC-250 cannot measure *λhhh*, but 500-GeV and 1-TeV extensions could obtain measurements with precisions of 27% and 10% respectively
- \triangleright CLIC 1.4 TeV $+$ 3 TeV \rightarrow 20% accuracy
- *.* 100-TeV hadron collider with 30 ab[−]¹ → 5-7% accuracy

see *e.g.* [Di Vita et al. 1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Gonçalves et al. 1802.04319], [Chang et al. 1804.07130], etc.

Radiative corrections to the Higgs trilinear coupling

- \blacktriangleright Higgs three-point function, $\Gamma_{hhh}(p_1^2,p_2^2,p_3^2)$, requires a diagrammatic calculation, with non-zero external momentum
- Instead it is much more convenient to work with an effective Higgs trilinear coupling *λhhh*

$$
\mathcal{L} \supset -\frac{1}{6} \lambda_{hhh} h^3 \quad \to \quad \underbrace{\lambda_{hhh}}_{\overline{M\text{S result}}} = \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \Bigg|_{\text{min.}}
$$

 $V_{\text{eff}}=V^{(0)}+\Delta V_{\text{eff}}$: effective potential (calculated in $\overline{\text{MS}}$ scheme)

In effective-potential calculations, one should usual fix conditions for the lower derivatives of V_{eff}

Using these, we obtain

$$
\lambda_{hhh} = \frac{3[M_h^2]_{V_{\text{eff}}}}{v} + \mathcal{D}_3 \Delta V_{\text{eff}}\big|_{\text{min}}, \quad \text{ with } \mathcal{D}_3 \equiv \frac{\partial^3}{\partial h^3} - \frac{3}{v}\left[-\frac{1}{v}\frac{\partial}{\partial h} + \frac{\partial^2}{\partial h^2}\right]
$$

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) Communication Controller 8, 2019 5 / 22

Radiative corrections to the Higgs trilinear coupling

 \blacktriangleright Γ_{hhh} and λ_{hhh} can be related as

$$
-\Gamma_{hhh}(0,0,0)=\underbrace{\hat{\lambda}_{hhh}}_{\text{OS result}}=\left(\frac{Z^{\text{OS}}_h}{Z^{\overline{\text{MS}}}_h}\right)^{3/2}\underbrace{\lambda_{hhh}}_{\text{MS result}}=\left(1+\frac{3}{2}\frac{d}{dp^2}\Pi_{hh}(p^2)\big|_{p^2=M_h^2}\right)\lambda_{hhh}
$$
\n
$$
\underbrace{\text{expressed in terms of}}_{\text{OS parameters}}
$$

 $Z_h^{\rm OS, MS}$: wave-function renormalisation constant in OS/ $\overline{\rm MS}$ scheme, $\Pi_{hh}(p^2)$: finite part of Higgs self-energy at external momentum p^2

 \blacktriangleright Taking $\Gamma_{hhh}(p_1^2,p_2^2,p_3^2) \simeq \Gamma_{hhh}(0,0,0)$ is a good approximation

→ shown for *λhhh* at one loop in [Kanemura, Okada, Senaha, Yuan '04] (difference is only a few %)

 \rightarrow no study including external momentum exists at two loops, but in the case of two-loop Higgs mass calculations, momentum effects are known to be subleading

RADIATIVE CORRECTIONS TO THE HIGGS trilinear coupling and non-decoupling **EFFECTS**

The Two-Higgs-Doublet Model (2HDM)

I CP-conserving 2HDM, with softly-broken \mathbb{Z}_2 symmetry ($\Phi_1 \to \Phi_1, \Phi_2 \to -\Phi_2$) to avoid tree-level FCNCs ► 2 $SU(2)_L$ doublets $\Phi_{1,2} = \begin{pmatrix} \Phi_{1,2}^+ \ \Phi_{1,2}^0 \end{pmatrix}$ $\big)$ of hypercharge $1/2$

$$
\begin{split} V_{\text{2HDM}}^{(0)} &= m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right) \end{split}
$$

- ► 7 free parameters in scalar sector: m_3^2 , λ_i $(i = 1 \cdots 5)$, $\tan \beta \equiv \langle \Phi_2^0 \rangle / \langle \Phi_1^0 \rangle$ $\left(m_1^2,\, m_2^2$ eliminated with tadpole equations, and $\langle\Phi_1^0\rangle+\langle\Phi_2^0\rangle=v^2=(246$ GeV) $^2)$
- \triangleright Doublets expanded in terms of mass eigenstates: h, H : CP-even Higgses, A: CP-odd Higgs, H^{\pm} : charged Higgs
- \blacktriangleright λ_i ($i = 1 \cdots 5$) traded for mass eigenvalues m_h , m_H , m_A , $m_{H^{\pm}}$ and CP-even mixing angle α
- \blacktriangleright m_3^2 replaced by a soft-breaking mass scale $M^2=2m_3^2/s_{2\beta}$

Non-decoupling effects in *λhhh* at one loop

First studies of the one-loop corrections to *λhhh* in the 2HDM in [Kanemura, Kiyoura, Okada, Senaha, Yuan '02] and [Kanemura, Okada, Senaha, Yuan '04]

 \triangleright *λ*_{*hhh}* up to leading one-loop corrections (for $s_{\beta-\alpha}=1$)</sub>

$$
\lambda_{hhh} = \frac{3m_h^2}{v} + \frac{1}{16\pi^2} \left[\underbrace{-\frac{48m_t^4}{v^3}}_{\text{SM-like}} + \underbrace{\sum_{\Phi = H, A, H^{\pm}} \frac{4n_{\Phi}m_{\Phi}^4}{v^3} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3}_{\text{BSM}} \right] + \cdots
$$

 \blacktriangleright Masses of additional scalars $\Phi = H, A, H^\pm$ in 2HDM can be written as $m_\Phi^2 = M^2 + \tilde{\lambda}_\Phi v^2$ $(\tilde{\lambda}_\Phi$: some combination of λ_i)

I Power-like dependence of BSM terms ∝ *m*⁴ ^Φ, and

$$
\left(1-\frac{M^2}{m_\Phi^2}\right)^3\to \begin{cases} 0, \text{ for } M^2\gg \tilde{\lambda}_\Phi v^2\\ 1, \text{ for } M^2\ll \tilde{\lambda}_\Phi v^2 \end{cases}
$$

State-of-the-art calculations of *λhhh*

At one loop

- *.* Complete diagrammatic, OS-scheme, calculations been performed for a number of BSM models with extended sectors (with singlets, doublets, triplets)
- *.* One-loop calculations available for 2HDMs, HSM, IDM in program H-COUP [Kanemura, Kikuchi, Sakurai, Yagyu '17], [Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu '19]

Non-decoupling effects found for a range of BSM models at one loop

⇒ **What happens at two loops? New huge corrections?**

We also want to investigate the fate of non-decoupling effects at two loops ⇒ **we derive dominant two-loop corrections to** *λhhh* **in a 2HDM** [J.B., Kanemura '19]

At two loops

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) Communication Controller 8, 2019 10 / 22

OUR TWO-LOOP CALCULATION of *λhhh* in the Two-Higgs-Doublet Model

Setup of our effective-potential calculation

Step 1: calculate
$$
\underbrace{V_{\text{eff}}}_{\overline{MS}} \rightarrow
$$
 Step 2: $\underbrace{\lambda_{hhh}}_{\overline{M}\overline{S}} = \frac{\partial^3 V_{\text{eff}}}{\partial h^3}\Big|_{\text{min.}}$ \rightarrow **Step 3:** convert from \overline{MS} to OS scheme

 \blacktriangleright $\overline{\text{MS}}$ -renormalised two-loop effective potential is

$$
V_{\rm eff} = V^{(0)} + \kappa V^{(1)} + \kappa^2 V^{(2)} \qquad \qquad \left(\kappa \equiv \frac{1}{16\pi^2}\right)
$$

 \blacktriangleright $V^{(2)}$: 1PI vacuum bubble diags., and we want to study the leading two-loop BSM corrections from **additional scalars** and **top quark**, so we only need

► Also, we neglect subleading contributions from *h*, G, G^{\pm} , and light fermions \Rightarrow no need to specify type of 2HDM + greatly simplifies the $\overline{\text{MS}} \to \text{OS}$ scheme conversion

Scenarios without mixing: aligned 2HDM $(s_{\beta-\alpha}=1) \Rightarrow$ evade exp. constrains! (loop-induced deviations from alignment also neglected)

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) October 8, 2019 11 / 22

Setup of our effective-potential calculation

 \triangleright OS result is obtained as

I Let's suppose (for simplicity) that λ_{hhh} only depends on one parameter *x*, as

$$
\lambda_{hhh} = \lambda_{hhh}^{(0)}(x^{\overline{\rm MS}}) + \kappa \delta^{(1)} \lambda_{hhh}(x^{\overline{\rm MS}}) + \kappa^2 \delta^{(2)} \lambda_{hhh}(x^{\overline{\rm MS}}) \qquad \left(\kappa = \frac{1}{16\pi^2}\right)
$$

and

$$
x^{\overline{\rm MS}} = X^{OS} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x
$$

then in terms of OS parameters

$$
\lambda_{hhh} = \lambda_{hhh}^{(0)}(X^{OS}) + \kappa \left[\delta^{(1)} \lambda_{hhh}(X^{OS}) + \frac{\partial \lambda_{hhh}^{(0)}}{\partial x}(X^{OS})\delta^{(1)}x \right] \n+ \kappa^2 \left[\delta^{(2)} \lambda_{hhh}(X^{OS}) + \frac{\partial \delta^{(1)} \lambda_{hhh}}{\partial x}(X^{OS})\delta^{(1)}x + \frac{\partial \lambda_{hhh}^{(0)}}{\partial x}(X^{OS})\delta^{(2)}x + \frac{\partial^2 \lambda_{hhh}^{(0)}}{\partial x^2}(X^{OS})(\delta^{(1)}x)^2 \right]
$$

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) Communication Controller 8, 2019 12 / 22

Setup of our effective-potential calculation

 \triangleright OS result is obtained as

I Let's suppose (for simplicity) that λ_{hhh} only depends on one parameter *x*, as

$$
\lambda_{hhh} = \lambda_{hhh}^{(0)}(x^{\overline{\rm MS}}) + \kappa \delta^{(1)}\lambda_{hhh}(x^{\overline{\rm MS}}) + \kappa^2 \delta^{(2)}\lambda_{hhh}(x^{\overline{\rm MS}}) \qquad \left(\kappa = \frac{1}{16\pi^2}\right)
$$

$$
x^{\overline{\rm MS}} = X^{\rm OS} + \kappa \delta^{(1)} x + \kappa^2 \delta^{(2)} x
$$

then in terms of OS parameters
\n
$$
\lambda_{hhh} = \lambda_{hhh}^{(0)}(X^{OS}) + \kappa \left[\delta^{(1)} \lambda_{hhh}(X^{OS}) + \frac{\partial \lambda_{hhh}^{(0)}}{\partial x}(X^{OS}) \delta^{(1)} x \right]
$$
\n
$$
+ \kappa^2 \left[\delta^{(2)} \lambda_{hhh}(X^{OS}) + \frac{\partial \delta^{(1)} \lambda_{hhh}}{\partial x}(X^{OS}) \delta^{(1)} x + \frac{\partial \lambda_{hhh}^{(0)}}{\partial x}(X^{OS}) \delta^{(2)} x + \frac{\partial^2 \lambda_{hhh}^{(0)}}{\partial x^2}(X^{OS}) (\delta^{(1)} x)^2 \right]
$$

because we neglect m_h in the loop corrections and $\lambda_{hhh}^{(0)}=3m_h^2/v$ (in absence of mixing)

λhhh at two loops in the 2HDM

In [JB, Kanemura '19], we considered for the first time $\lambda_{hhh}^{(2)}$ in the 2HDM: \rightarrow 15 new BSM diagrams appearing in $V^{(2)}$ in the 2HDM w.r.t. the SM case

2HDM

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) Channes Communication of Carlsruhe October 8, 2019 13 / 22

λhhh at two loops in the 2HDM

 \blacktriangleright We assume *H*, *A*, H^{\pm} to have a degenerate mass m_{Φ} \rightarrow 3 mass scales in the calculation: m_t , m_{Φ} , M (\rightarrow simpler analytical expressions) In the $\overline{\text{MS}}$ scheme

$$
\delta^{(2)}\lambda_{hhh} = \frac{16m_{\Phi}^4}{v^5} \left(4 + 9 \cot^2 2\beta\right) \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[-2M^2 - m_{\Phi}^2 + (M^2 + 2m_{\Phi}^2) \overline{\log m_{\Phi}^2}\right] \n+ \frac{192m_{\Phi}^6 \cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[1 + 2 \overline{\log m_{\Phi}^2}\right] \n+ \frac{96m_{\Phi}^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 \left[-1 + 2 \overline{\log m_{\Phi}^2}\right] + \mathcal{O}\left(\frac{m_{\Phi}^2 m_t^4}{v^5}\right)
$$

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) October 8, 2019 14 / 22

λhhh at two loops in the 2HDM

$$
\delta^{(2)}\lambda_{hhh} = \frac{16m_{\Phi}^4}{v^5} \left(4 + 9\cot^2 2\beta\right) \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[-2M^2 - m_{\Phi}^2 + (M^2 + 2m_{\Phi}^2)\overline{\log m_{\Phi}^2}\right] \n+ \frac{192m_{\Phi}^6 \cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^4 \left[1 + 2\overline{\log m_{\Phi}^2}\right] \n+ \frac{96m_{\Phi}^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2}\right)^3 \left[-1 + 2\overline{\log m_{\Phi}^2}\right] + \mathcal{O}\left(\frac{m_{\Phi}^2 m_t^4}{v^5}\right)
$$

Some checks

- \blacktriangleright expression obtained **both** with derivatives of V_{eff}^{2HDM} and with general results for the derivatives of effective-potential integrals
- \blacktriangleright checked that $\log Q^2$ dependence cancels when including running of all parameters at lower orders
- \triangleright checked the decoupling behaviour \rightarrow see next slides

Decoupling behaviour of the $\overline{\text{MS}}$ expressions

 \triangleright Decoupling theorem \rightarrow corrections from additional BSM states should decouple if said states are taken to be very massive

 $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi} v^2$

ID To have $m_{\Phi} \to \infty$, then we must take $M \to \infty$, otherwise the quartic couplings grow out of control

$$
\delta^{(2)} \lambda_{hhh} = \frac{16m_{\Phi}^4}{v^5} \left(4 + 9 \cot^2 2\beta \right) \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^4 \left[-2M^2 - m_{\Phi}^2 + (M^2 + 2m_{\Phi}^2) \overline{\log} m_{\Phi}^2 \right]
$$

$$
\delta^{(1)} \lambda_{hhh} = \frac{16m_{\Phi}^4}{v^3} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 + \frac{192m_{\Phi}^6 \cot^2 2\beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^4 \left[1 + 2 \overline{\log} m_{\Phi}^2 \right]
$$

$$
+ \frac{96m_{\Phi}^4 m_t^2 \cot^2 \beta}{v^5} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left[-1 + 2 \overline{\log} m_{\Phi}^2 \right] + \mathcal{O} \left(\frac{m_{\Phi}^2 m_t^4}{v^5} \right)
$$

 \blacktriangleright Fortunately all of these terms go like

$$
\label{eq:massless} \left(m_\Phi^2\right)^{n-1}\left(1-\frac{M^2}{m_\Phi^2}\right)^n\underset{m_\Phi^2=M^2+\tilde{\lambda}_\Phi v^2}{=} \frac{(\tilde{\lambda}_\Phi v^2)^n}{M^2+\tilde{\lambda}_\Phi v^2}\xrightarrow[M\to\infty]{M\to\infty} 0
$$

Decoupling behaviour and $\overline{\text{MS}}$ to OS scheme conversion

- \blacktriangleright To express $\delta^{(2)}\lambda_{hhh}$ in terms of physical parameters $(v_{\text{phys}}, M_t, M_A = M_H = M_{H^\pm} = M_\Phi)$, we replace $m_A^2 \to M_A^2 - \Pi_{AA}(M_A^2)$, $m_H^2 \to M_H^2 - \Pi_{HH}(M_H^2)$, $m_{H^\pm}^2 \to M_{H^\pm}^2 - \Pi_{H^+H^-}(M_{H^\pm}^2)$, $v \rightarrow v_{\text{phys}} - \delta v$, $m_t^2 \rightarrow M_t^2 - \Pi_{tt}(M_t^2)$
- \blacktriangleright A priori, M is still renormalised in $\overline{\text{MS}}$ scheme, because it is difficult to relate to physical observable ... but then, expressions do not decouple for $M_\Phi^2 = M^2 + {\tilde \lambda}_\Phi v^2$ and $M \to \infty!$
- **►** This is because we should relate M_{Φ} , renormalised in OS scheme, and M, renormalised in $\overline{\text{MS}}$ scheme, with a **one-loop relation** \rightarrow then the two-loop corrections decouple properly
- \triangleright We give a new "OS" prescription for the finite part of the counterterm for *M* by requiring that the decoupling of $\delta^{(2)}\hat{\lambda}_{hhh}$ (in OS scheme) is apparent using a relation $M_\Phi^2 = \tilde{M}^2 + \tilde{\lambda}_\Phi v^2$

$$
\begin{split} \delta^{(2)} \hat{\lambda}_{hhh} &= \frac{48 M_{\Phi}^6}{v_{\rm phys}^5} \left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^4 \left\{4+3 \cot ^2 2 \beta \left[3-\frac{\pi}{\sqrt{3}} \left(\frac{\tilde{M}^2}{M_{\Phi}^2}+2\right)\right]\right\} +\frac{576 M_{\Phi}^6 \cot ^2 2 \beta}{v_{\rm phys}^5} \left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^4 \\ &\quad +\frac{288 M_{\Phi}^4 M_{t}^2 \cot ^2 \beta}{v_{\rm phys}^5} \left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^3 +\frac{168 M_{\Phi}^4 M_{t}^2}{v_{\rm phys}^5} \left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^3 -\frac{48 M_{\Phi}^6}{v_{\rm phys}^5} \left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^5 +\mathcal{O}\left(\frac{M_{\Phi}^2 M_{t}^4}{v_{\rm phys}^5}\right) \end{split}
$$

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) October 8, 2019 17 / 22

NUMERICAL RESULTS

In the following we show results for the BSM deviation *δR*:

$$
\delta R \equiv \frac{\lambda_{hhh}^{\rm 2HDM}}{\lambda_{hhh}^{\rm SM}} - 1 = \frac{\Delta \lambda_{hhh}^{\rm 2HDM}}{\lambda_{hhh}^{\rm SM}}
$$

Decoupling behaviour

. δR size of BSM contributions to λ _{*hhh*}:

$$
\delta R \equiv \frac{\lambda_{hhh}^{\rm 2HDM}}{\lambda_{hhh}^{\rm SM}}-1
$$

- *.* Radiative corrections from additional scalars $+$ top quark indeed decouple properly for $\tilde{M} \rightarrow \infty$
- \triangleright *M* controls decoupling of BSM scalars in 2HDM in OS scheme!

Non-decoupling effects

$$
\delta R \equiv \frac{\lambda_{hhh}^{\rm 2HDM}}{\lambda_{hhh}^{\rm SM}}-1
$$

. Other limit of interest: $\tilde{M} = 0 \rightarrow$ maximal non-decoupling effects

$$
\triangleright \delta^{(1)} \hat{\lambda}_{hhh} \to \propto M_{\Phi}^4
$$

$$
\triangleright \delta^{(2)} \hat{\lambda}_{hhh} \to \propto M_{\Phi}^6
$$

 \triangleright For $\tilde{M} = 0$, tan $\beta = 1.1$, tree-level unitarity is lost around $M_{\Phi} \approx 600$ GeV [Kanemura, Kubota, Takasugi '93]

Maximal BSM allowed deviations

$$
\delta R \equiv \frac{\lambda_{hhh}^{\text{2HDM}}}{\lambda_{hhh}^{\text{SM}}} - 1
$$

. Here: Maximal deviation *δR* $(1\ell+2\ell)$ while fulfilling perturbative unitarity, in $(\tan \beta, M_{\Phi})$ plane

 $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$

- \rhd One cannot take M_{Φ} → ∞ with $\tilde{M} = 0$ without breaking unitarity
- \triangleright At some point \tilde{M} must be non-zero \rightarrow reduction factor

$$
\left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^n<1
$$

Maximal BSM allowed deviations

$$
\delta R \equiv \frac{\lambda_{hhh}^{\text{2HDM}}}{\lambda_{hhh}^{\text{SM}}} - 1
$$

. Here: Maximal deviation *δR* $(1\ell+2\ell)$ while fulfilling perturbative unitarity, in $(\tan \beta, M_{\Phi})$ plane

 $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$

- \rhd One cannot take M_{Φ} → ∞ with $\tilde{M} = 0$ without breaking unitarity
- \triangleright At some point \tilde{M} must be non-zero \rightarrow reduction factor

$$
\left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^n<1
$$

Maximal BSM allowed deviations

$$
\delta R \equiv \frac{\lambda_{hhh}^{\text{2HDM}}}{\lambda_{hhh}^{\text{SM}}} - 1
$$

. Here: Maximal deviation *δR* $(1\ell+2\ell)$ while fulfilling perturbative unitarity, in $(\tan \beta, M_{\Phi})$ plane

 $M_{\Phi}^2 = \tilde{M}^2 + \tilde{\lambda}_{\Phi} v^2$

- \rhd One cannot take M_{Φ} → ∞ with $\tilde{M} = 0$ without breaking unitarity
- \rhd At some point \tilde{M} must be non-zero \rightarrow reduction factor

$$
\left(1-\frac{\tilde{M}^2}{M_{\Phi}^2}\right)^n<1
$$

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) October 8, 2019 21 / 22

Summary

First two-loop calculation of λ_{hhh} in 2HDM, in a scenario with alignment

- \triangleright Two-loop corrections to λ_{hhh} remain smaller than one-loop contributions, at least as long as perturbative unitarity is maintained → **typical size** 10 − 20% **of one-loop contributions**
- ⇒ non-decoupling effects found at one loop are **not drastically changed**
- \Rightarrow in the future perspective of a precise measurement of λ_{hhh} , computing corrections beyond one loop will be **necessary**
- **I** Precise calculation of Higgs couplings $(\lambda_{hhh}, \text{etc.})$ can allow distinguishing aligned scenarios **with or without decoupling**

THANK YOU FOR YOUR ATTENTION!

Backup

An example of experimental limits on *λhhh*

Example of current limits on κ_{λ} from the ATLAS search of $hh\to b\bar b\gamma\gamma$ (taken from [ATLAS collaboration 1807.04873])

Johannes Braathen (Osaka University) [KIT-NEP'19 Workshop, Karlsruhe](#page-0-0) Cotober 8, 2019 22 / 22

Momentum dependence (at one loop)

figures from [Kanemura, Okada, Senaha, Yuan '04]

The Inert Doublet Model

- \triangleright Model of 2 $SU(2)_L$ doublets, with \mathbb{Z}_2 symmetry under which $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$ unbroken **after EWSB** $V_{\text{IDM}}^{(0)} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{\lambda_1}{2}$ $\frac{\lambda_1}{2}|\Phi_1^2|^4 + \frac{\lambda_2}{2}$ $\frac{\lambda_2}{2}|\Phi_2^2|^4 + \lambda_3|\Phi_1|^2|\Phi_2|^2 + \lambda_4|\Phi_1^{\dagger}\Phi_2|^2 + \frac{\lambda_5}{2}$ $\frac{\lambda_5}{2} \left((\Phi_1^{\dagger} \Phi_2)^2 + h.c. \right)$
- \blacktriangleright Expand the doublets as

$$
\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix} \qquad \begin{array}{l} H,A,H^\pm : \text{ inert scalars} \\ \text{(no couplings to fermions, no scalar mixing)} \end{array}
$$

- \blacktriangleright Tree-level masses of scalars read $m_h^2(h) = \mu_1^2 + \frac{3}{2}$ $\frac{3}{2}\lambda_1(v+h)^2$, $m_G^2(h) = m_{G\pm}^2(h) = \mu_1^2 + \frac{1}{2}$ $\frac{1}{2}\lambda_1(v+h)^2$ $m_H^2(h) = \mu_2^2 + \frac{1}{2}$ $\frac{1}{2}\lambda_H(v+h)^2$, $m_A^2(h) = \mu_2^2 + \frac{1}{2}$ $\frac{1}{2}\lambda_A(v+h)^2$, $m_H^2\pm(h) = \mu_2^2 + \frac{1}{2}$ $\frac{1}{2}\lambda_3(v+h)^2$
- \triangleright We consider a DM-inspired scenario in which *H* is light and is DM ($M_H \simeq M_h/2$), and to maximise the leading corrections to λ_{hhh} we consider μ_2 small, *i.e.*

 M_h *,* M_H *,* $\mu_2 \ll M_A$ *,* M_{H^+}

λhhh at two loops in the IDM

 \triangleright 8 new diagrams appearing in $V^{(2)}$ in the IDM w.r.t. the SM

Included for the first time in [JB, Kanemura '19]

 \triangleright Only (*i*) and (*ii*) studied in [Senaha '18] → in particular (*vi*)-(*viii*) depend on inert scalar quartic λ_2 After conversion to the OS scheme

$$
\delta^{(2)} \hat{\lambda}_{hhh} = \frac{6 \lambda_2}{v_{\rm phys}^3} \Big(3 M_A^4 + 4 M_A^2 M_{H^\pm}^2 + 8 M_{H^\pm}^4 \Big) + \frac{60 (M_A^6 + 2 M_{H^\pm}^6)}{v_{\rm phys}^5} + \frac{24 (M_A^2 - M_{H^\pm}^2)^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} \\ + \frac{24 M_t^4 (M_A^2 + 2 M_{H^\pm}^2)}{v_{\rm phys}^5} + \frac{42 M_t^2 (M_A^4 + 2 M_{H^\pm}^4)}{v_{\rm phys}^5} - \frac{2 (M_A^4 + 2 M_{H^\pm}^4) (M_A^2 + 2 M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A^4 + 2 M_{H^\pm}^4)}{v_{\rm phys}^5} \\ + \frac{42 M_t^2 (M_A^4 + 2 M_{H^\pm}^4)}{v_{\rm phys}^5} + \frac{42 M_t^2 (M_A^4 + 2 M_{H^\pm}^4)}{v_{\rm phys}^5} - \frac{2 (M_A^4 + 2 M_{H^\pm}^4) (M_A^2 + 2 M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} \\ + \frac{2 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} + \frac{4 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} + \frac{4 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} \\ + \frac{4 M_t^2 (M_A^2 + M_{H^\pm}^2)}{v_{\rm phys}^5} + \frac{4 M_t^2 (M_A^4 + M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A^4 + M_{H^\pm}^2)}{v_{\rm phys}^5} \cdot \frac{2 M_t^2 (M_A
$$

Numerical results

− 1