
Technical Foundations of CORSIKA 8: New
Concepts for Scientific Computing

Hans Dembinski∗
Max Planck Institute for Nuclear Physics, Heidelberg, Germany
E-mail: hdembins@mpi-hd.mpg.de

Lukas Nellen
National Autonomous University of Mexico, Mexico City, Mexico
E-mail: lukas@nucleares.unam.mx

Maximilian Reininghaus
Karlsruhe Institute of Technology, Karlsruhe, Germany
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos
Aires, Argentina
E-mail: reininghaus@kit.edu

Ralf Ulrich
Karlsruhe Institute of Technology, Karlsruhe, Germany
E-mail: ralf.ulrich@kit.edu

CORSIKA is the leading simulation code for air showers in the field of astroparticle physics.
CORSIKA 8 is a new project aiming to make CORSIKA ready for the next decades of research; a
rewrite of CORSIKA in modern C++ with a flexible, efficient, and modular design. CORSIKA 8
makes full use of open development, being a collaborative project with contributors from around
the world. The modular design makes modifications and contributions very straightforward and
lowers the technical barrier for users to become active developers. CORSIKA 8 is written in
C++17, which brings new powerful features useful for scientific high-performance computing.
We discuss work on its technical foundations, the geometry and quantity system (a quantity is a
number with a dimension). The goal of these systems is to make physical and geometric calcula-
tions easy and safe in CORSIKA 8, while maintaining highest computational speed. We further
discuss how continuous integration is used to maintain high code quality standards.

36th International Cosmic Ray Conference -ICRC2019-
July 24th - August 1st, 2019
Madison, WI, U.S.A.

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:hdembins@mpi-hd.mpg.de
mailto:lukas@nucleares.unam.mx
mailto:reininghaus@kit.edu
mailto:ralf.ulrich@kit.edu


Technical Foundations of CORSIKA 8 Hans Dembinski

1. Introduction

Cosmic rays from GeV up ZeV energies are a key research subject in astoparticle physics. The
interactions of such particles with magnetic fields and matter are of central importance for many
ongoing or planned projects [1, 2, 3, 4]. In many cases cosmic rays are directly the main messenger
particles, or in some cases they are the main physics backgrounds. Excellent understanding of
cosmic ray interactions with matter and magnetic fields is one of the baseline requirements for all
experiments in the field of cosmic rays, gamma ray as well as neutrino astronomy. CORSIKA 8
will provide a modern and powerful framework for this.

2. Goal and strategy of the project

The goal driving the development the CORSIKA 8 is to provide a modular, flexible, and
efficient framework to support physics applications in the most optimal way. The framework is
specifically designed to deal with the computational problems of redistributing enormous amounts
of energy from single particles into huge secondary particle cascades. One particular physics driven
issue is the precision of consistently handling particles on vastly different energy and length scales.
Algorithms must be sufficiently precise and very robust to support this. There are also specific
difficulties that arise in the context of huge particle cascades; the storage and memory management
of handling single or billions of particles simultaneously in the same framework must be very
efficient and completely transparent to the user.

It is a typical and very common problem of physics software that the implemented physics
models, theories and algorithms can become extremely complex and it is up to the physicist pro-
grammer to take care of the correctness and consistency. Examples where special care is required
are: coordinate systems, geometric transformation, physical units, and particle codes. In COR-
SIKA 8 we provide technology to help preventing the most problematic of such difficulties and
mistakes. The driving concept behind this is that in physics most calculations are done in spe-
cific reference frames or with important assumptions like unit systems. For the first time in such a
simulation framework we enforce all of such external assumption on the level of software syntax.
The software will not compile or work if the physicist by accident violates some of the underlying
physical assumptions and reference systems. Very importantly this means: the software will never
work incorrectly because of such mistakes.

Furthermore, the CORSIKA 8 framework is developed in a modular way that makes it straight-
forward to separate code to handle specific tasks. This is of critical importance since it will allow
to extend the framework in the future and to replace or complement existing parts with new knowl-
edge. A full structural outline of the CORSIKA 8 shower simulation framework is given in fig. 1.

3. Unit system

The incorrect usage of physical units of measure is regarded as one of the three most common
errors in scientific computing [6]. The perhaps most illustrative example is the loss of the Mars
Climate Orbiter during its orbital insertion maneuver the cause of which is largely attributed to the
mixture of imperial and metric units. While the specification stipulated the use of metric units, in
one of its software components imperial units were used instead [7].

1



Technical Foundations of CORSIKA 8 Hans Dembinski

Parallel Stacks

Parallel Stacks Stack

Config

Modular and structured,
 

Depending on user modules/plugins/...

Processes

Energy losses, 
ionization, 
Cherenkov, 
Radio, 
...

Interactions, 
kill particles
decay
...

Transport

Output Streams

List of 
continuous
processes

List of 
stochastic
processes

GPU input

modify particle

provides

provides

provides

Transport 
Medium

wri te

Migration
matr ix

(container)

provides

dX step

Migration,
coupled CE

Primary 
particle(s)

Ordered access

Stack

Cascade
Equations

Classify,
Thinning

create particles

provides

provides

User defined 
data sinks

standard output 
container

data pipeline, 
socketswri te

discrete process

update

get-step-length

Tracking

modify tables

create particles

wri te

MPIClassify,
Thinning

Figure 1: The basic structure of the data and control flow in CORSIKA 8 [5]. Modularity is a key
aspect of the design.

Especially in a collaborative environment such as CORSIKA 8, a strategy to avoid these kinds
of errors is a key asset. A possible solution, annotating data types with units, was proposed already
more than 40 years ago [8] but hardly any programming language today provides built-in support,
therefore usually requiring the use of custom libraries [9]. Unit support for C++, making use of the
technique of template metaprogramming, was first described in ref. [10] and a conceptually very
similar solution is employed in CORSIKA 8, based on the PhysUnits C++11 library [11] with
some custom modifications described below. For the typical developer, working with code with
units has the following implications:

• Literals converting quantities to the CORSIKA 8-internal units are provided. One can write
height = 1.425_kmwithout having to worry about whether or not CORSIKA 8 handles
lengths internally in centimeters, or whether cross-sections are handled in millibarn, as it is
the case e.g. in SIBYLL [12], or rather in square femtometers as in PYTHIA [13].

• Quantities of distinct physical dimensions correspond to distinct datatypes, e.g. Grammage-
Type and CrossSectionType, making the meaning of arguments and return values in
function signatures much easier to grasp at first glance and therefore improving the readabil-
ity of the code.

2



Technical Foundations of CORSIKA 8 Hans Dembinski

• A dimensional analysis is performed during compilation. Multiplications and divisions in-
volving quantities typically yield quantities of different dimensions, e.g. dividing Length-
Type by TimeType yields SpeedType. Additions and subtractions are only possible
with quantities of the same type. Calculations which violate these rules result in compilation
errors, thereby preventing errors that would otherwise likely stay unnoticed.

The implementation is based on template metaprogramming and keeps track of the dimensions
of quantities via a set of integers (since fractional powers of dimensions do not occur in physical
equations [14]) representing the powers of each base dimension, i.e. mass, length, time, etc., of
the International System of Units (SI). While in principle sufficient to express any calculation, the
strict enforcement of correct dimensions by the compiler prevents volitional "sloppy" handling of
units as we often want to do it in particle physics, e.g. writing E2 = p2 +m2 would be impossi-
ble. On the other hand, imposing c = h̄ = 1 would reduce the number of dimensions and, among
other things, time and length dimensions would become equivalent, spoiling the usefulness of the
whole machinery. As a compromise solution, noticing that there are only very few places in which
both macroscopic and microscopic units are relevant at the same time, we therefore complemented
the base dimensions by a "HEP energy dimension" with the base unit eV. Conversion functions
are provided to convert SI to natural units and vice versa by multiplying by appropriate powers of
h̄c ≈ 197MeVfm determined from the dimensions of the input and output quantity types mostly
automatically. The mapping of SI to natural units is surjective due to reduced number of dimen-
sions. Consequently, the developer has to provide hints, e.g. whether a "HEP energy" is to be
converted to an inverse SI length or time.

We would like to stress here that the whole quantity algebra is performed during compilation
and impacts neither the memory footprint nor the execution speed of CORSIKA 8.

4. Geometry and environment system

The geometry system is one of the core parts of the framework and handles all low-level ge-
ometric computations, i.e., computations involving points, vectors, lines, spheres, etc. The main
aspects of its design are inspired by the Offline software framework of the Pierre Auger Observa-
tory [15].

There is a clear distinction between points, vectors and their respective coordinates or compo-
nents in given coordinate systems (CS). For example, when defining new points from their coor-
dinates (rather than obtaining them as a result of computations with existing objects) one needs to
specify the CS in which the coordinates are valid. There is one predefined CS, the root CS, and new
CSes can be defined by specifying a transformation which transforms an already exiting CS to the
new CS. As possible transformations we support elements of SE(3), i.e. rotations and translations.
The developer can then query the coordinates of the point in any CS and the appropriate chain of
required transformations applied to the coordinates is determined automatically in the background.
While coordinates of points are affected by both rotations and translations, vector components are
affected only by the rotational part of a transformation since they can be considered as displacement
between two points, therefore invariant under translations.

It should be noted, however, that the explicit usage of coordinates or vectors, and therefore
also the construction of new CS, is only rarely necessary and computations can often be expressed

3



Technical Foundations of CORSIKA 8 Hans Dembinski

purely symbolically. For example, the mass density distribution ρ(rrr) at some point rrr in the atmo-
sphere according to the isothermal model in the approximation of a planar Earth is given by

ρ(rrr) = ρ0 exp
(

1
λ
(rrr− ppp0) ·~a

)
, (4.1)

where ~a denotes the normal vector of the plane, ρ0 the density at the reference point ppp0, and λ

the scale height. In code, this could be expressed as rho0 * exp((r - p0).dot(a) /

lambda) without the need to refer to any CS. In case rrr, ppp0, or ~a are defined in different CSs, the
transformation to a common CS happens automatically.

The actual linear algebra happening in the background is handled by the Eigen (v3) library [16].
On top of that, a wrapper class called QuantityVector integrates the unit system with the bare
Eigen data types so that vectors of different quantities, e.g. lengths and magnetic fields, can be
used together and their scalar and cross products yield the appropriate quantities. Points on the
other hand live in Euclidean space by definition and therefore only lengths are supported as their
coordinates. The Vector and Point classes use a QuantityVector internally to store their
components / coordinates and furthermore keep a reference to the CS they are defined in (see fig. 2).

Vector<dim>
QuantityVector<dim>

Eigen::Vector3d

dim C
S

 ref.

Figure 2: A sketch of the Vector class; dim denotes the dimension of the quantity stored inside
and is a template parameter.

The geometry system is extensively used within the environment module. With that, users
can specify their own models of the "world" in which they want to propagate particle cascades.
The basic idea consists of specifying volumes of simple geometric shapes which are then assigned
to models of their relevant physical properties [17]. The single volumes are to be combined in
a tree structure, the volume tree, which represents containment: An inner volume that is fully
contained within an outer volume is a child node of the latter. This principle was chosen to facilitate
computationally efficient particle tracking and is inspired by common practice in ray tracing in
computer graphics: In every step of the particle it is necessary to determine the next point of
intersection of its trajectory "ray" based on current position and direction of flight with a volume
boundary. With the described hierarchical volume tree the number of such intersection tests are
minimized.

A second aspect concerning the particle tracking in an environment with multiple nodes is
the numerical precision at boundary crossings between two nodes [18]. Particles which are to be
moved to the point of intersection will either end up numerically slightly after or before the correct
boundary point, causing a mismatch between the logical (where it should be) and numerical (actual)
location in the volume tree. Especially the first case can be problematic since the particle would
determine the same boundary crossing again during the next step and essentially become stuck. By
explicitly storing the current logical node of the particle as one of its properties and updating it at

4



Technical Foundations of CORSIKA 8 Hans Dembinski

Universe

atm. layer

mountain mountainsoil

atm. layer

Figure 3: Left: example environment with a two-layer atomosphere, two mountains, and an un-
derground observation level (indicated by the yellow, dashed line). Right: its representation as a
volume tree

every boundary crossing we are able to prevent such spurious boundary crossings in an efficient
and robust way.

5. Continuous integration

CORSIKA 8 uses continuous integration (CI) to permanently keep the software in an error-
free state. The CI system runs a suite of hand-written tests of the software for each feature that
is about the be merged into the master branch. The most basic is the compilation test: a check
that the software compiles correctly for all supported configurations and platforms. We use Docker
instances to set-up identical blank copies of the test platforms. If the software compiles, a suite of
unit tests is run inside the Docker instance. If any of the tests fails, the CI system reports the failure
and the developer is required to repair the software until all tests pass again.

A unit test executes a single isolated aspect (a unit) of the public interface of CORSIKA 8 –
typically a single function, class, or method – on a fixed input and compares the output with an
expectation. A unit test requires that the tested aspect of the software behaves deterministically
and triggers no side-effects that change the results of other unit tests. Development with unit tests
enforces good practices, as it encourages a modular design with well-specified interfaces.

Ideally, unit tests check the full specification of the software unit by testing all possible inputs,
including invalid inputs. Literally testing all input values is often unfeasible. In practice, a good unit
test checks a few input samples for each unique code path inside the software unit. For example,
for the functixon double sqrt(double), one could test the input values -1, 0, 1, 4, 9, ±∞, and
NaN. The C++ compilers gcc and clang offer options to instrument the executables with counters
that check how often a source code line was executed. This is used to measure code coverage,
the fraction of source lines tested in unit tests. We use lcov to process coverage data into human-
readable coverage reports. Changes and features which add new code paths to CORSIKA 8 are
required to have accompanying unit tests so that they do not reduce the code coverage.

The C++ compilers gcc and clang also offer options to instrument the generated executables
with sanitizers. Sanitizers are a suite of low-level tests that detect common mistakes in C++ pro-
grams which are not found by other means. In particular, they mark stack and heap memory that

5



Technical Foundations of CORSIKA 8 Hans Dembinski

was freed and trigger an abort when this memory is accessed. This typically happens when an ob-
ject whose life-time ended is accessed by a reference. Sanitizers offer a fast alternative to running
unit tests in valgrind, which slows down execution by orders of magnitude compared to a factor of
3 to 5. We will use sanitizers for unit tests where the performance penalty is acceptable.

Ideally, a CI system keeps a software project in a valid state so that a release can be made at
any time from the master branch. For CORSIKA 8 as a whole, this cannot work, since a Monte
Carlo simulation using floating-point arithmetic is chaotic: a tiny change to the code and the input
can cause an unpredictable changes in the output. Only averages over many simulation runs can be
predicted, but those are expensive to compute and may still randomly fluctuate outside of defined
bounds with some finite probability. Thus, in CORSIKA 8 we will use a validation system in
addition to unit tests, which is only run in regular intervals and before releases. The validation
results are not fully deterministic and need to be checked by humans.

6. Template metaprogramming

C++ is an object-oriented language and encourages software to use modular and replacable
parts, which interact via well-defined interfaces. The classic approach in C++, called dynamic
polymorphism, is to define a base class with the interface consisting of virtual methods, and then
inherit implementation classes from the base with implementations of these methods. The instances
of the implementation classes must be allocated from the heap. Their pointers can be cast to the
common base and put into collections, such as std::vector. Behind the scene, a call to a virtual
method through the base pointer passes through a hidden pointer table and is forwarded to the
correct method function pointer of the derived class.

The classic approach is not very performant when class instances are accessed through the
base pointer in a tight loop. For example, the process sequence in CORSIKA 8 is iterated over
millions of times for each particle in the simulation. There are two reasons for the performance
penalty. Firstly, instances of implementation classes must be allocated on the heap and in general
are not placed nearby in memory. Data and instruction locality is very important on modern CPUs
which are limited by memory access times and need to use the CPU caches effectively. Secondly,
since the method function pointer resolution happens at run-time, the C++ compiler cannot inline
the method body. Without the inlining, one has to pay for two extra pointer jumps, and the compiler
cannot optimize the code beyond the method body.

An alternative modern approach in C++ for this situation is static polymorphism. In this
case, one writes the implementation classes with a common interface. If the process sequence
is known at compile-time, the class instances can be placed in a std::tuple and iterated over with
boost::mp11::tuple_for_each from the Boost C++ libraries. The std::tuple assures data and
instruction locality. The C++ compiler can now inline methods and apply optimizations across
several method calls. CORSIKA 8 primarily uses static polymorphism. Classic dynamic poly-
morphism is also considered, since it would allow users to modify the process sequence without
recompiling the code, which could be very useful to change the process sequence from Python.

6



Technical Foundations of CORSIKA 8 Hans Dembinski

7. Summary or Conclusion

The CORSIKA 8 simulation framework provides a novel solution for modular, robust and
efficient computing in astroparticle physics. The framework actively prevents typical mistakes and
help the application programmer to yield correct results fast and reliably. The internal structure
of CORSIKA 8 is optimized for modularity and extensibility as well as for efficient memory and
resource usage.

Acknowledgements

M.R. acknowledges support by the DFG-funded Doctoral School “Karlsruhe School of Ele-
mentary and Astroparticle Physics: Science and Technology”.

References

[1] CTA CONSORTIUM collaboration, Design concepts for the Cherenkov Telescope Array CTA: An
advanced facility for ground-based high-energy gamma-ray astronomy, Exper. Astron. 32 (2011) 193
[1008.3703].

[2] PIERRE AUGER collaboration, The Pierre Auger Cosmic Ray Observatory, Nucl. Instrum. Meth.
A798 (2015) 172 [1502.01323].

[3] TELESCOPE ARRAY collaboration, The surface detector array of the Telescope Array experiment,
Nucl. Instrum. Meth. A689 (2013) 87 [1201.4964].

[4] ICECUBE collaboration, First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys.
26 (2006) 155 [astro-ph/0604450].

[5] R. Engel, D. Heck, T. Huege, T. Pierog, M. Reininghaus, F. Riehn et al., Towards a Next Generation
of CORSIKA: A Framework for the Simulation of Particle Cascades in Astroparticle Physics, Comput.
Softw. Big Sci. 3 (2019) 2 [1808.08226].

[6] ISO/IEC JTC1/SC22/WG5, Information Technology — Programming languages — Fortran — Units
of measure for numerical quantities, Tech. Rep. N2113, 2016.

[7] Mars Climate Orbiter Mishap Investigation Board, Phase I report, 1999.

[8] N. Gehani, Units of measure as a data attribute, Comput. Lang. 2 (1977) 93 .

[9] O. Bennich-Björkman and S. McKeever, The Next 700 Unit of Measurement Checkers, in Proc. 11th
ACM SIGPLAN Int. Conf. Softw. Lang. Eng., SLE 2018, pp. 121–132, 2018, DOI.

[10] Z. D. Umrigar, Fully Static Dimensional Analysis with C++, SIGPLAN Not. 29 (1994) 135.

[11] M. Moene, “PhysUnits C++11.” https://github.com/martinmoene/PhysUnits-CT-Cpp11.

[12] E.-J. Ahn, R. Engel, T. K. Gaisser, P. Lipari and T. Stanev, Cosmic ray interaction event generator
SIBYLL 2.1, Phys. Rev. D 80 (2009) 094003 [0906.4113].

[13] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to
PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [1410.3012].

[14] Á. P. Raposo, The algebraic structure of quantity calculus II: Dimensional analysis and differential
and integral calculus, Measur. Sci. Rev. 19 (2019) 70 .

7

https://doi.org/10.1007/s10686-011-9247-0
https://arxiv.org/abs/1008.3703
https://doi.org/10.1016/j.nima.2015.06.058
https://doi.org/10.1016/j.nima.2015.06.058
https://arxiv.org/abs/1502.01323
https://doi.org/10.1016/j.nima.2012.05.079
https://arxiv.org/abs/1201.4964
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://doi.org/10.1016/j.astropartphys.2006.06.007
https://arxiv.org/abs/astro-ph/0604450
https://doi.org/10.1007/s41781-018-0013-0
https://doi.org/10.1007/s41781-018-0013-0
https://arxiv.org/abs/1808.08226
https://doi.org/10.1016/0096-0551(77)90010-8
https://doi.org/10.1145/3276604.3276613
https://doi.org/10.1145/185009.185036
https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://doi.org/10.1103/PhysRevD.80.094003
https://arxiv.org/abs/0906.4113
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.2478/msr-2019-0012


Technical Foundations of CORSIKA 8 Hans Dembinski

[15] S. Argirò, S. L. C. Barroso, J. Gonzalez, L. Nellen, T. C. Paul, T. A. Porter et al., The offline software
framework of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 580 (2007) 1485 [0707.1652].

[16] G. Guennebaud, B. Jacob et al., “Eigen v3.” https://eigen.tuxfamily.org.

[17] M. Reininghaus and R. Ulrich, CORSIKA 8 – Towards a modern framework for the simulation of
extensive air showers, EPJ Web Conf. 210 (2019) 02011 [1902.02822].

[18] B. M. Smith, Robust Tracking and Advanced Geometry for Monte Carlo Radiation Transport, Ph.D.
thesis, Fusion Technology Institute, University of Wisconsin-Madison, 2011.

8

https://doi.org/10.1016/j.nima.2007.07.010
https://arxiv.org/abs/0707.1652
https://eigen.tuxfamily.org
https://doi.org/10.1051/epjconf/201921002011
https://arxiv.org/abs/1902.02822

