

#### **Introduction to Reinforcement Learning**

#### Anis Farshian Abbasi

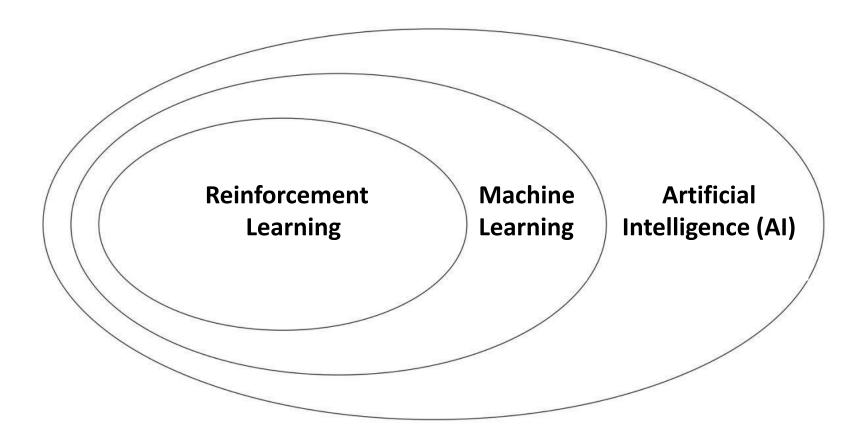
January 2020

Karlsruhe Institute of Technology, SCC

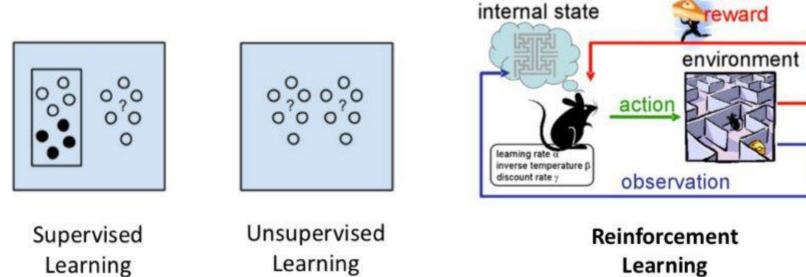


#### Terminology





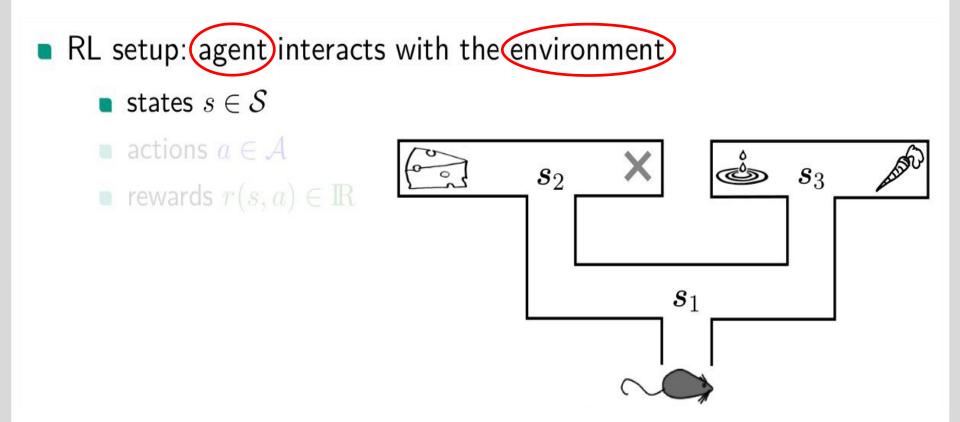












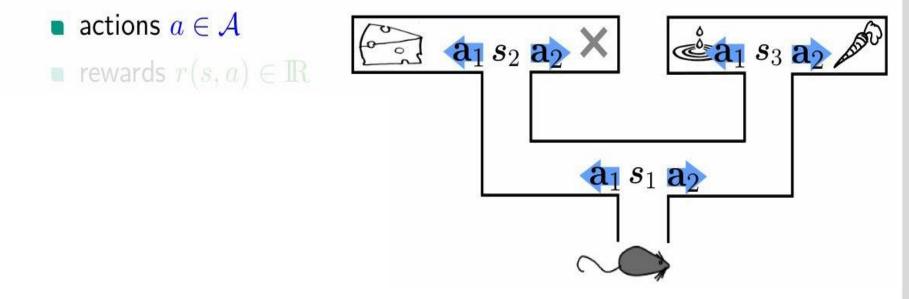


#### What is RL?



RL setup: agent interacts with the environment

• states  $s \in \mathcal{S}$ 



#### Anis Farshian Abbasi – Introduction to Reinforcement Learning

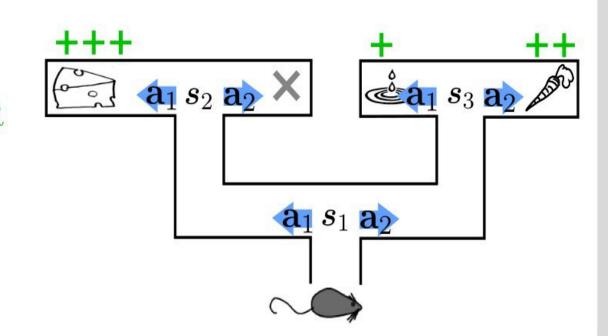


RL setup: agent interacts with the environment

• states  $s \in \mathcal{S}$ 

What is RL?

- actions  $a \in \mathcal{A}$
- rewards  $r(s,a) \in {\rm I\!R}$





### **Environment and Actions**

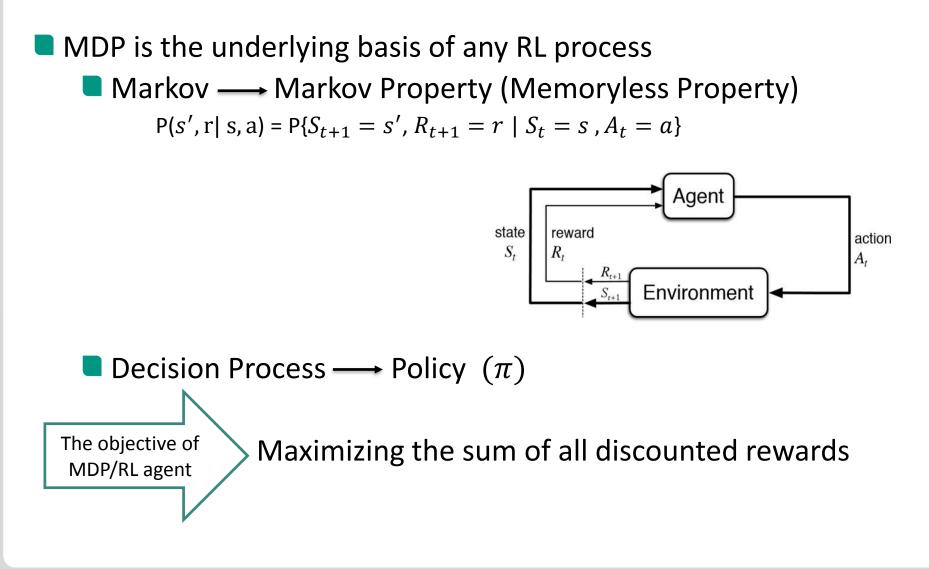


Fully Observable (Chess) vs Partially Observable (Poker)

- Static (Chess) vs Dynamic (Driving)
- Single Agent (Atari) vs Multi Agent (Driving)
- Deterministic (Cart Pole) vs Stochastic (Driving)
- Discrete (Chess) vs Continuous (Carte Pole)

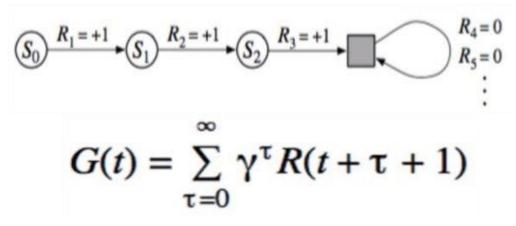
# **Markov Decision Processes**





#### **Future Rewards**





(Discount factor:  $0 < \gamma < 1$ )

- Why "discounted"?
  - Uncertainty about future due to environment stochasticity / partial observability
  - Math trick to help analyze convergence

#### **Value Function**



The estimate of how good a state/state-action pair is!
Almost all RL algorithms estimate value functions
State Value Function (V(s)):

$$V_{\pi}(s) = E_{\pi} \left[ G(t) \mid S_t = s \right]$$

 $V(s) = E[r + \gamma V(s')]$ 

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \{r + \gamma V_{\pi}(s')\}$$

(Bellman Equation)

State-action Value Function (Q(s,a)):

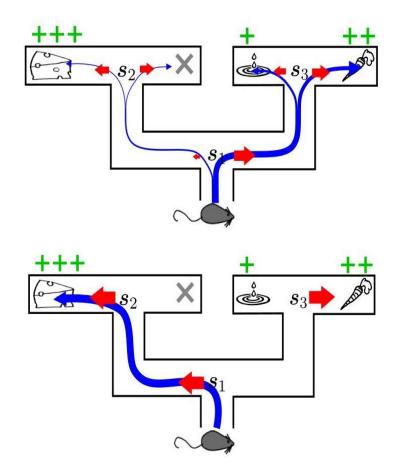
$$Q_{\pi}(s,a) = E_{\pi} \left[ G(t) \mid S_t = s, A_t = a \right]$$

# **Optimal policy**



$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} \Big[ \sum_{t=0}^{\infty} \gamma^t r_t \Big]$$

- states  $s \in \mathcal{S}$
- actions  $a \in \mathcal{A}$
- rewards  $r(s,a) \in {\rm I\!R}$
- policy  $\pi(a|s) \in \mathbb{P}(\mathcal{A})$



# **3 Types of Reinforcement Learning**



# Model-based

- Learn the model of the world, then plan using the model
- Update model often
- Re-plan often

### Value-based

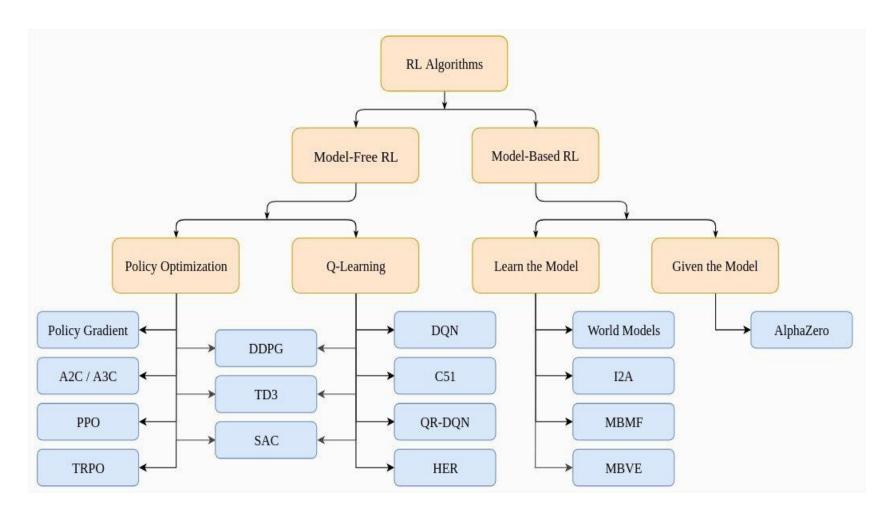
- Learn the state or state-action value
- Act by choosing best action in state
- Exploration is a necessary add-on

# Policy-based

- Learn the stochastic policy function that maps state to action
- Act by sampling policy
- Exploration is baked in

# **Taxonomy of RL Algorithms**





Link: https://spinningup.openai.com/en/latest/spinningup/rl\_intro2.html

# **Q-Learning**



- State-action Value Function (Q(s,a))
- Off-policy and model-free method
- Use any policy to estimate Q that maximizes future reward
- Only requirement: Keep updating each (s,a) pair

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R(t+1) + \gamma max_{a'}Q(S_{t+1}, a') - Q(S_t, A_t) \right]$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma max_{a'}Q(s', a') - Q(s, a) \right]$$

#### **Exploration vs Exploitation**







# **Deep Reinforcement Learning**



- RL + Neural Networks
- Deep Q-Networks (DQN)
- Use a neural network to approximate the Q-function
- Loss Function (squared error):

$$L = \mathbb{E}[\underbrace{(\mathbf{r} + \gamma max_{a'}Q(s', a')}_{\text{target}} - \underbrace{Q(s, a)}_{\text{prediction}}^2]$$

#### Sources



#### Reinforcement Learning: An Introduction

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

#### Deep Reinforcement Learning

https://www.springer.com/gp/book/9789811382840

- https://deeplearning.mit.edu/
- https://whirl.cs.ox.ac.uk/