Big Data Science in Astroparticle Research - Workshop

Europe/Berlin
RWTH Aachen University SuperC

RWTH Aachen University SuperC

RWTH Aachen University Templergraben 57, 52062 Aachen phone:0241 8090801
Andreas Haungs (KIT), Martin Erdmann
Description

Helmholtz Alliance for Astroparticle Physics HAP

Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz der Deutschen Physikalischen Gesellschaft e. V. AKPIK


Castle Erlangen (© Erich Malter)

Surveys
Big Data Science in Astroparticle Research - Evaluation
    • Arrive
    • Beginners Tutorial Ford-Room: Deep Learning
      • 1
        Short Welcome
        Speaker: Martin Erdmann (RWTH Aachen University)
      • 2
        Deep Learning for Newcomers: Neural Network Basics
        Speaker: Peter Fackeldey (III. Physikalisches Institut A, RWTH Aachen University)
    • Tutorial: Generali Room: Advanced Deep Networks
    • Coffee
    • Beginners Tutorial Ford-Room: Deep Learning
      • 4
        Deep Learning for Newcomers: Neural Network Architectures
        Speaker: Peter Fackeldey (III. Physikalisches Institut A, RWTH Aachen University)
    • Tutorial: Generali Room: Advanced Deep Networks
    • Big Data Science in Fundamental Physics Research: Perspectives of Big Data Science
      • 6
        Welcome to the RWTH Aachen University
        Speaker: Prof. Carsten Honerkamp
      • 7
        ErUM-Data: Modern Digitization in Research on Universe and Matter
        Speaker: Prof. Thomas Kuhr (LMU Munich)
    • Deep Learning
      • 8
        Applying Dynamic Graph CNN to reconstruct the direction of electrons in JUNO
        Speaker: Mr Hauke Schmidt (Hamburg)
      • 9
        Identification of Cosmic Rays from Sources using Dynamic Graph Convolutional Neural Networks
        Speaker: Mr Niklas Langner (RWTH Aachen University)
    • Coffee
    • Deep Learning
    • Lunch
    • Deep Learning
      • 14
        Bayesian Networks (exact title & title tbc)
        Speaker: Prof. Tilman Plehn (University Heidelberg)
      • 15
        Exploitation of Symmetries and prior Knowledge in Deep Learning Architectures for IceCube
        Speaker: Mirco Huennefeld (TU Dortmund)
      • 16
        Addressing domain adaptation issues with CRNNs and VERITAS data
        Speaker: Mr Samuel Spencer (University of Oxford)
    • Coffee
    • Deep Learning
      • 17
        Modern Machine Learning in Astronomy (exact title & title tbc)
        Speaker: Dr Kai Polsterer (HITS Heidelberg)
      • 18
        Determining the distribution of interstellar gas with information field theory
        Speaker: Dr Andrea Vittino (RWTH Aachen University)
      • 19
        Searching Pulsars Using Neural Networks
        Speaker: Mr Lars Künkel (University Bielefeld)
      • 20
        The Astrophysical Multimessenger Observatory Network (AMON)
        Speaker: Prof. Miguel Mostafa (Penn State University)
    • Conference Dinner
    • Deep Learning
      • 21
        Simulation of Extensive Air Showers with Deep Neural Networks
        Speaker: Marcel Köpke (Karlsruhe Institute of Technology)
      • 22
        Physics motivated GAN for generating fourmomenta
        Speaker: Mr Niclas Eich (RWTH Aachen University)
    • Open Data, Data Centers, Computing Technology
      • 23
        The Astro@NFDI Endevour
        Speaker: Dr Harry Enke (Leibniz-Institut für Astrophysik Potsdam (AIP))
      • 24
        Open data and machine learning in German--Russian Data Life Cycle initiative
        Speaker: Victoria Tokareva (KIT)
    • Coffee
    • Open Data, Data Centers, Computing Technology
    • Discussion on perspectives and common efforts
    • Depart