EPOS - Proton+air interaction

Figure 1: Spectrum of proton (left) and neutron (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 2: Spectrum of π^{\pm} (left) and π^{0} (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 3: Spectrum of K^{\pm} (left) and K_l (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 4: Spectrum of π^0 and gammas for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

EPOS - π^{\pm} +air interaction

Protons, neutrons and kaons spectra are scaled by their respective R_{MC} and R_{SM} taking/giving the energy from/to pions. The transfers are made bin by bin from ≈ 0.1 GeV for not change the low energy peak in protons and neutrons, up to $\approx 0.8E_0$, where E_0 is the pion energy in the interaction.

Figure 5: Spectrum of proton (left) and neutron (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 6: Spectrum of π^{\pm} (left) and π^{0} (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 7: Spectrum of K^{\pm} (left) and K_l (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 8: Spectrum of π^0 and gammas for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

EPOS - K^{\pm} +air interaction

Protons, neutrons and pions spectra are scaled by their respective R_{MC} and R_{SM} taking/giving the energy from/to kaons. The transfers are made bin by bin from ≈ 0.1 GeV for not change the low energy peak in protons and neutrons, up to $\approx 0.5E_0$, where E_0 is the kaon energy in the interaction.

Figure 9: Spectrum of proton (left) and neutron (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 10: Spectrum of π^{\pm} (left) and π^{0} (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 11: Spectrum of K^{\pm} (left) and K_l (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 12: Spectrum of π^0 and gammas for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

EPOS - K_l +air interaction

Protons, neutrons and pions spectra are scaled by their respective R_{MC} and R_{SM} taking/giving the energy from/to kaons. The transfers are made bin by bin from ≈ 0.1 GeV for not change the low energy peak in protons and neutrons, up to $\approx 0.5E_0$, where E_0 is the kaon energy in the interaction.

Figure 13: Spectrum of proton (left) and neutron (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 14: Spectrum of π^{\pm} (left) and π^{0} (right) for K_{l} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 15: Spectrum of K^{\pm} (left) and K_l (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 16: Spectrum of π^0 and gammas for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

EPOS - n+air interaction

Figure 17: Spectrum of proton (left) and neutron (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 18: Spectrum of π^{\pm} (left) and π^{0} (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 19: Spectrum of K^{\pm} (left) and K_l (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 20: Spectrum of π^0 and gammas for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

QGSJETII - Proton+air interaction

Figure 21: Spectrum of proton (left) and neutron (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 22: Spectrum of π^{\pm} (left) and π^{0} (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 23: Spectrum of K^{\pm} (left) and K_l (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 24: Spectrum of π^0 and gammas for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

QGSJETII - π^{\pm} +air interaction

Figure 25: Spectrum of proton (left) and neutron (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 26: Spectrum of π^{\pm} (left) and π^{0} (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 27: Spectrum of K^{\pm} (left) and K_l (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 28: Spectrum of π^0 and gammas for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

QGSJETII - K^{\pm} +air interaction

Figure 29: Spectrum of proton (left) and neutron (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 30: Spectrum of π^{\pm} (left) and π^{0} (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 31: Spectrum of K^{\pm} (left) and K_l (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 32: Spectrum of π^0 and gammas for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

QGSJETII - K_l +air interaction

Figure 33: Spectrum of proton (left) and neutron (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 34: Spectrum of π^{\pm} (left) and π^{0} (right) for K_{l} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 35: Spectrum of K^{\pm} (left) and K_l (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 36: Spectrum of π^0 and gammas for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

QGSJETII - n+air interaction

Figure 37: Spectrum of proton (left) and neutron (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 38: Spectrum of π^{\pm} (left) and π^{0} (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 39: Spectrum of K^{\pm} (left) and K_l (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 40: Spectrum of π^0 and gammas for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

SIBYLL - Proton+air interaction

Figure 41: Spectrum of proton (left) and neutron (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 42: Spectrum of π^{\pm} (left) and π^{0} (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 43: Spectrum of K^{\pm} (left) and K_l (right) for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 44: Spectrum of π^0 and gammas for p+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

SIBYLL - π^{\pm} +air interaction

Figure 45: Spectrum of proton (left) and neutron (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 46: Spectrum of π^{\pm} (left) and π^{0} (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 47: Spectrum of K^{\pm} (left) and K_l (right) for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 48: Spectrum of π^0 and gammas for π^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

SIBYLL - K^{\pm} +air interaction

Figure 49: Spectrum of proton (left) and neutron (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 50: Spectrum of π^{\pm} (left) and π^{0} (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 51: Spectrum of K^{\pm} (left) and K_l (right) for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 52: Spectrum of π^0 and gammas for K^{\pm} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

SIBYLL - K_l +air interaction

Figure 53: Spectrum of proton (left) and neutron (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 54: Spectrum of π^{\pm} (left) and π^{0} (right) for K_{l} +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 55: Spectrum of K^{\pm} (left) and K_l (right) for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 56: Spectrum of π^0 and gammas for K_l +air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

SIBYLL - n+air interaction

Figure 57: Spectrum of proton (left) and neutron (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation

Figure 58: Spectrum of π^{\pm} (left) and π^{0} (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 59: Spectrum of K^{\pm} (left) and K_l (right) for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap

Figure 60: Spectrum of π^0 and gammas for n+air interaction applying R_{MC} and R_{SM} and energy conservation, in this case some lines overlap