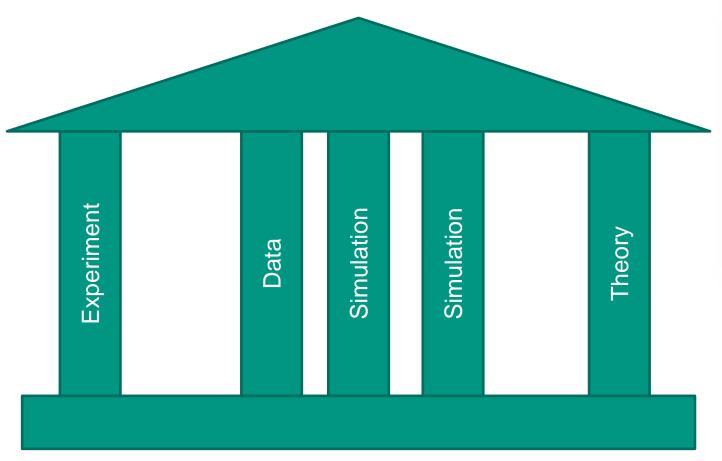
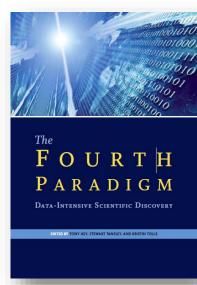


Enabling Data-Intensive Computing & the EOSC

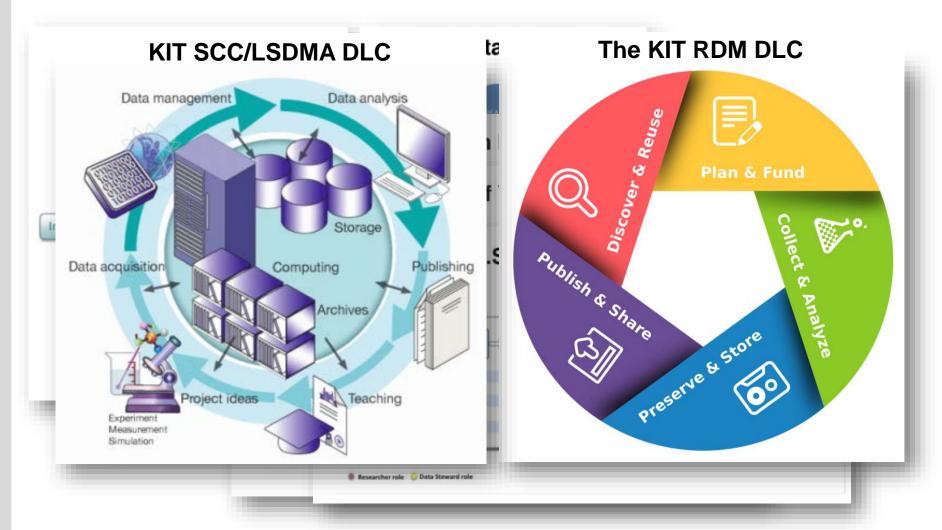
Achim Streit <achim.streit@kit.edu>


711. WE-Heraeus-Seminar "The Science Cloud"

Steinbuch Centre for Computing



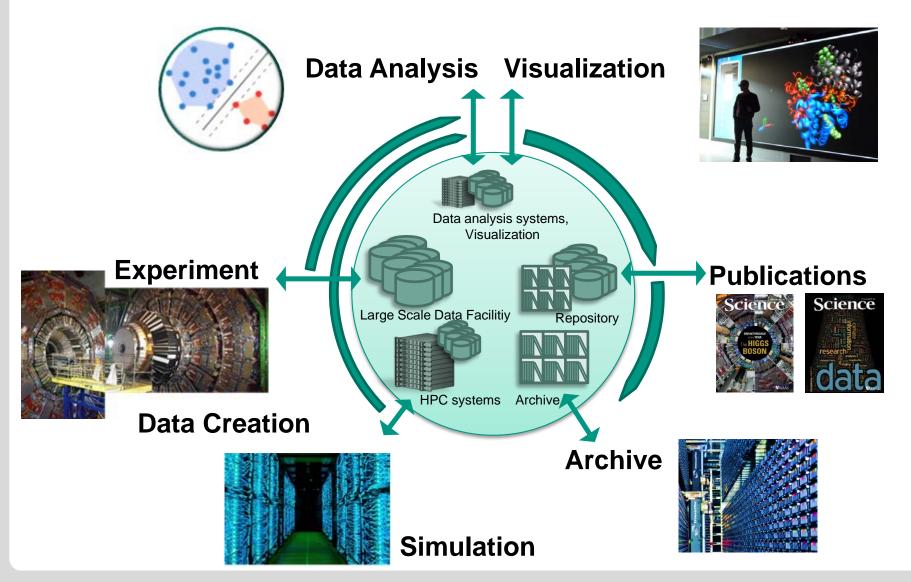
Four pillars of Science



Tansley, Kristin Tolle,
The Fourth Paradigm:
Data-Intensive Scientific
Discovery, Microsoft
Research, ISBN 9780982544204,
http://research.microsoft.
com/enus/collaboration/fourthpar
adigm/

Tony Hey, Stewart

Research Data Life Cycle



Source: https://www.slideshare.net/EUDAT/the-data-lifecycle-eudat-summer-school-yann-le-franc

3

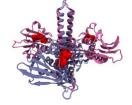
Enabling Data-Intensive Computing

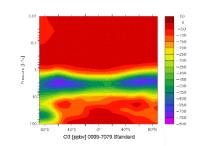
Enabling Data-intensive Computing

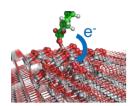
Supercomputing

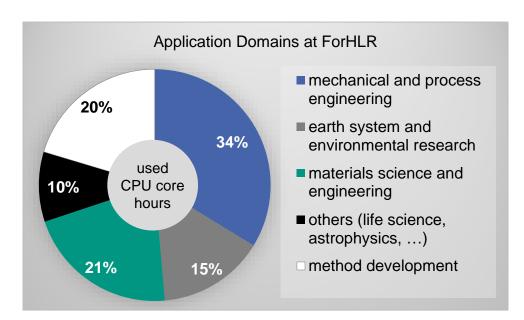
- Operation of HPC systems
 - ForHLR: Tier-2 system in Germany, 34,800 cores with > 1.4 PetaFlop/s peak, peer-review access for users in Germany
 - bwUniCluster: Tier-3 system in the state BaWü, HPC capacity system with 18,300 cores, shareholder ownership with all 9 state universities

- Application optimisation, scaling, model enhancements
- Simulation Labs in Helmholtz Programme
- HYIGS MBS + FiNE
- Innovation drivers for SMEs
- Architect for HPC environment in BaWü





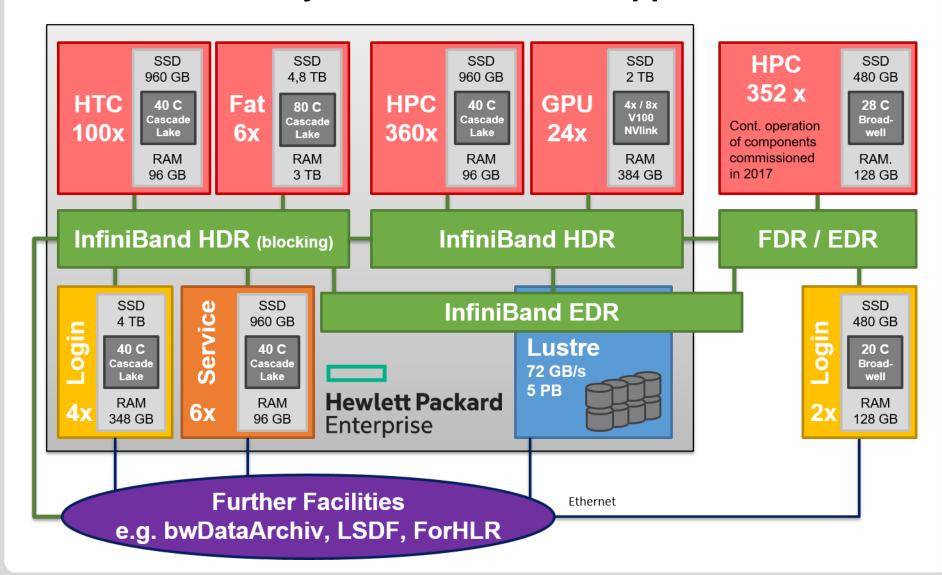

Ginkgo



ForHLR:

Forschungshochleistungsrechner Karlsruhe

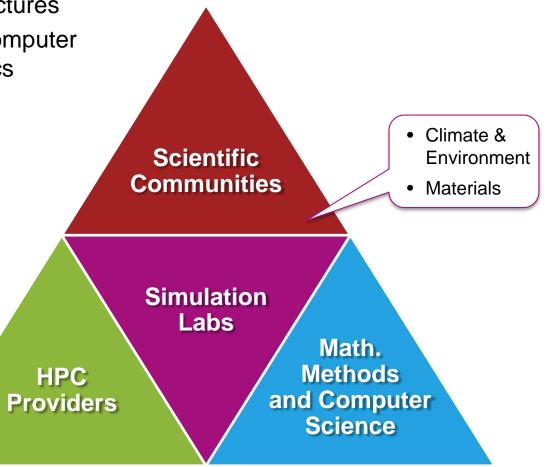
- Third-party funded mid-range national (Tier-2) supercomputer
- 34,800 compute cores
- 1.4 PetaFlop/s peak
- Peer-review access
- Self-designed cooling concept


1st prize German Data Center Award 2017

Newly built energy and resource efficient data centers

New HPC Tier-3 System with ML / AI Support

Simulation Labs (SimLabs)


Bridging between

Providing HPC infrastructures

Research methods in computer science and mathematics

Scientific communities

By performing interdisciplinary joint R&D

Enabling Data-intensive Computing

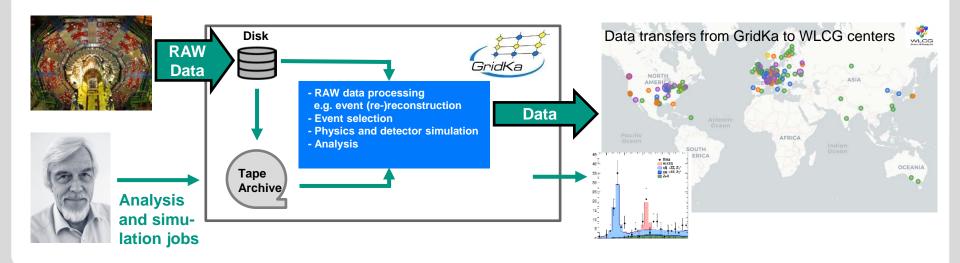
Big Data

- Operation of GridKa
 - German Tier-1 in WLCG for an international community

- Operation of the Large-Scale Data Facility
 - Multi-disciplinary data centre for climate research, systems biology, energy research, etc. in BaWü

- Joint R&D with scientific communities
 - Generic data management research
 - Data Life Cycle Labs in Helmholtz Programme
- Innovation driver for SMEs
- Active role in large projects & initiatives

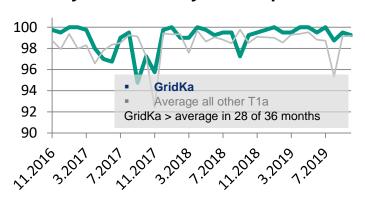
GridKa


Data and analysis center for particle and astroparticle physics

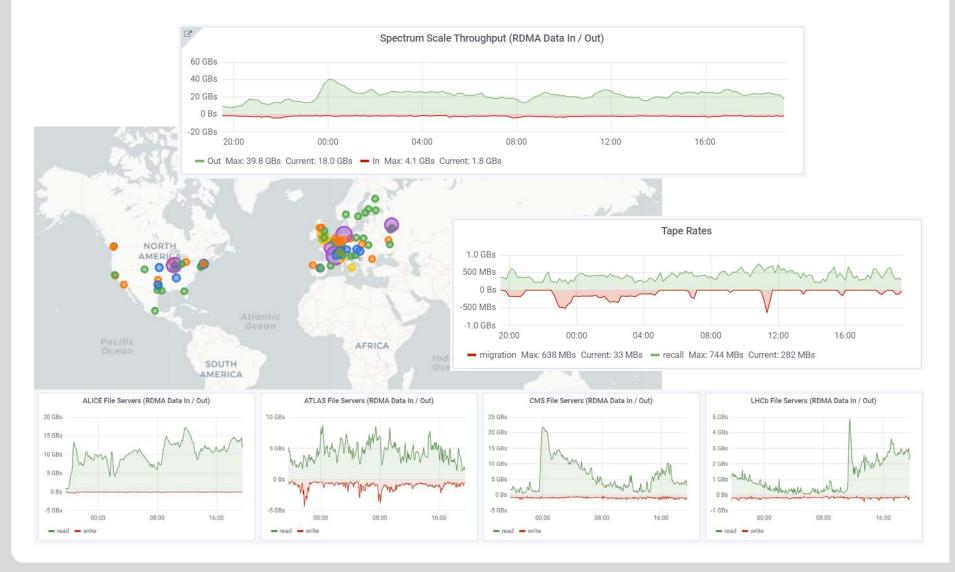
- A cornerstone of the Worldwide LHC Computing Grid (WLCG)
- Integral part of the LHC data processing chain

Conclusion slide of R.D. Heuer, July 4, 2012

12


GridKa Contribution to WLCG

Reliability measured by LHC experiments

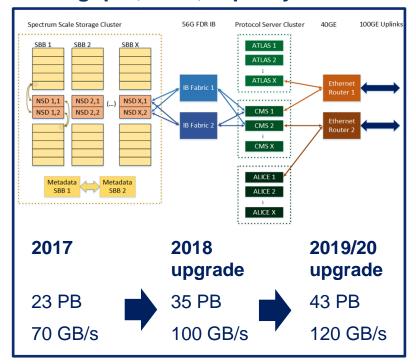


232 M core-hr
20 M jobs
57 PB in
110 PB out
0 downtime

GridKa - some Grafana plots...

14

Addressing Changing Computing Models


Software Defined Online Storage

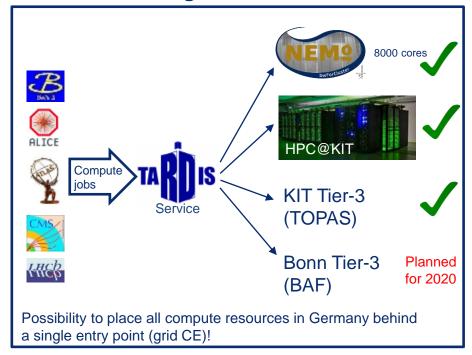
- Data access becomes less predictable
- Increasing data access from remote compute sites
 - Dedicated sites (WLCG)
 - Opportunistically used sites (HPC, cloud)

Powerful Networks

Redundant links to CERN (100 + 2x10 Gbit/s) and to DFN (2x100 Gbit/s)

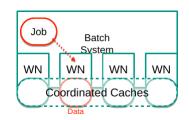
Scalable online storage technology: throughput, IOPs, capacity

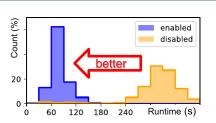
15


Addressing Changing Computing Models

- Software Defined Online Storage
- Powerful Networks
- Leverage Additional Opportunistic Resources
 - More heterogeneous computing resources (CPUs, GPUs, ...)
 - Long-term and opportunistic access to HPC, cloud,
 - Resources that the experiments even do not know about!
 - Hide additional resources behind a single entry point visible to the experiments' central workload management

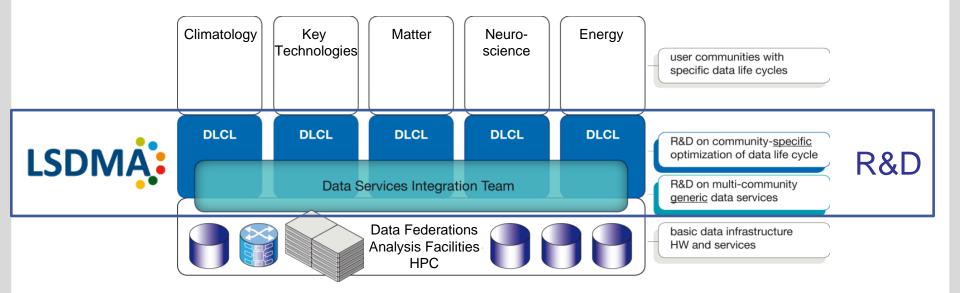
Workload management services


Addressing Changing Computing Models



- Software Defined Online Storage
- Powerful Networks
- Leverage Additional Opportunistic Resources
- Optimized Resources and Increased Computing Efficiency
 - Specialized resources
 - Innovative ideas and improvements to speed-up analysis tasks
 - Optimized configurations of hard- and software
 - Sophisticated data and workload management

Highly optimized analysis cluster



- Performance increase through data locality
 - Coordinated data placement on local caches in compute nodes
- Performance boost for certain types of computing tasks
 - Example (top right corner): CMS calibration jobs
- Prototype cluster with 862 CPU cores and GPUs
 - Currently promising tests by CMS and Belle-II
 - Other experiments from 2020

Concept of Data Life Cycle Labs (DLCL) from 2011

<u>Data Life Cycle Labs</u>

Joint R&D with communities

- Optimizing the data life cycle
- Specific data analysis tools and services

<u>Data Services Integration Team</u>

Generic, multi-community R&D

- Interface between federated data infrastructures and DLCLs resp. Communities
- Integration of data services in scientific working process

Highlight from SDL Earth System Science: Compression Methods for Floating-Point Data

- New climate models produce several
 TBs of data at each simulation run
- Nowadays the bottleneck is not about solving the differential equations, but the storage of the output
- The goal of compression methods is to identify and reduce the redundant information in the data

		_			
223.48	221.71	221.54	222.87	?	What will be the next value?
				222.40	Average?
				222.87	Last value?
				224.20	Last difference?
				221.47	Seasonal information?

Uğur Çayoğlu et al. IEEE e-Science 2019 DOI: 10.1109/eScience.2019.00032

Methods developed at SCC are on average 10% better than previously developed compression methods for floating point data

Source: https://code.mpimet.mpg.de/attachments/download/16625/r2b02_europe.png

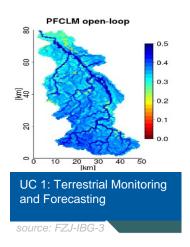
Helmholtz Analytics Framework (HAF) co-coordinated by KIT

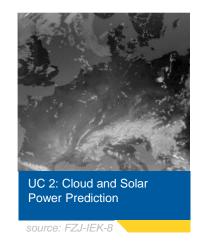
- Create data analytics techniques in a systematic manner
 - Domain-specific as well as generalizable and standardized
 - Use case driven co-design between domain scientists, data experts and infrastructure professionals

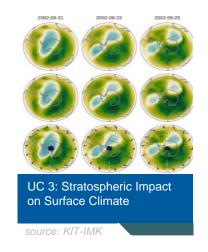
DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

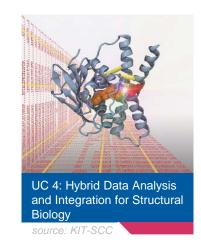
HelmholtzZentrum münchen

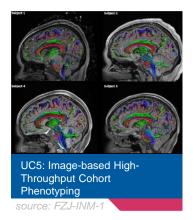
German Research Center for Environmental Health

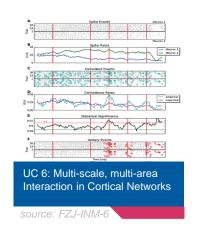

www.helmholtz-analytics.de

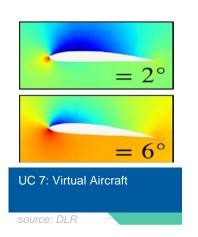

- Facts & Figures
 - 3.5 years started 10/2017
 - 6 Mio. €
 - 23 FTE

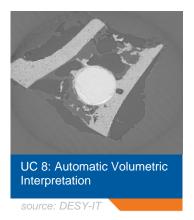


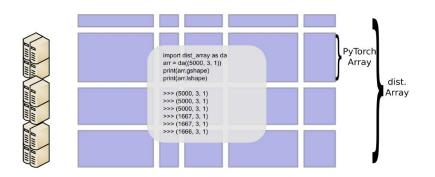

HAF Use Cases

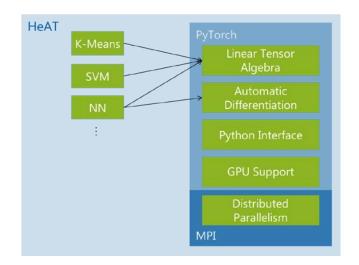









HAF – Helmholtz Analytics Toolkit (HeAT)



- Aim: develop a generic method for AI on modern, parallel and distributed systems and computing architectures (GPUs)
- Open-source Python data analysis library
 - Parallel, distributed and GPU-accelerated tensor and algorithm implementations

- Bleeding edge distributed auto-gradient computation for large-scale data-parallel and model-parallel neural networks
- GitHub Repository https://github.com/helmholtz-analytics/heat

SCC projects landscape – issuing the European federated data infrastructure

Governance Policies Skills/Training

Data / Security
Policies
Architecture

Services Software Integration

IT services infrastructure and Support

inception

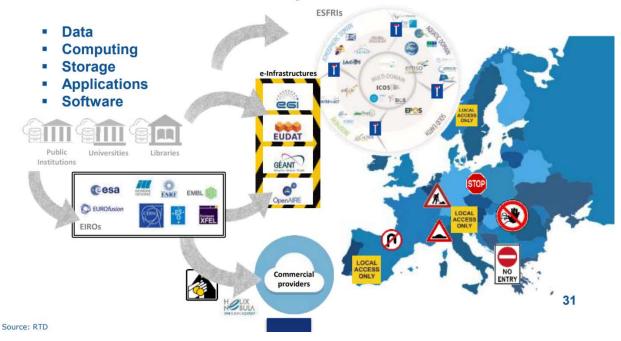
development

piloting

production

European Open Science Cloud

Disclaimer


- I'm using material from other presentations and webpages, all sources are specified, links are provided
- Very good source of information is the EOSC portal https://www.eosc-portal.eu/
- Objects with a red border contains a hyperlink for more information
- KIT is member in the EOSC-related projects EOSCpilot (already finished), EOSC-hub, EOSCsecretariat.eu, EOSCsynergy, EOSC-Pillar

Until recently...

D. Under the current model, fragmentation and uneven access to information would prevail

Source: https://ec.europa.eu/research/openscience/pdf/eosc_strategic_implementation_roadmap_large.pdf

Vision...

"The EOSC will offer 1.7 million European researchers and 70 million professionals in science, technology, the humanities and social sciences a virtual environment with open and seamless services for storage, management, analysis and reuse of research data, across borders and scientific disciplines by federating existing scientific data infrastructures, currently dispersed across disciplines and the EU Member States."

(from https://www.eosc-portal.eu/about/eosc)

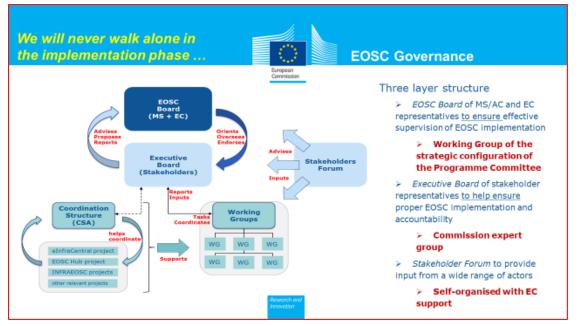
Source: https://ec.europa.eu/research/openscience/pdf/eosc_strategic_implementation_roadmap_large.pdf

Evolution

04-2016	EOSC is proposed by the EC as part of the European Cloud Initiative to establish a competitive data and knowledge economy in Europe		
10-2016	First report of the EOSC High Level Expert Group (HLEG) contains initial recommendation to realise the EOSC https://op.europa.eu/en/publication-detail/-/publication/2ec2eced-9ac5-11e6-868c-01aa75ed71a1		
	intensive consultations with member states and stakeholders		
06-2017	First EOSC Summit with the ratification of the EOSC		
	Declaration by more than 70 institutions https://eosc-portal.eu/sites/default/files/eosc_declaration.pdf		
03-2018	EC presents the implementation roadmap for the EOSC https://ec.europa.eu/transparency/regdoc/rep/10102/2018/EN/SWD-2018-83-F1-EN-MAIN-PART-1.PDF		
11-2018	EOSC HLEG publishes 2nd and final report "Prompting an EOSC in practice"		
	https://op.europa.eu/en/publication-detail/-/publication/5253a1af-ee10-11e8-b690-01aa75ed71a1		
	FAIR data HLEG publish the report "Turning FAIR into reality"		
	https://op.europa.eu/en/publication-detail/-/publication/7769a148-f1f6-11e8-9982-01aa75ed71a1		
11-2018	Official launch of the EOSC & https://www.eosc-portal.eu/		

Landscaping of current EOSC projects

- General overview: https://www.eosc-portal.eu/about/eosc-projects
- Call INFRAEOSC-05-2018-2019, part a), to support the EOSC governance, see https://cordis.europa.eu/programme/rcn/703191/en


- Call INFRAEOSC-05-2018-2019, part b), EDSC-Piller to coordinate national and thematic initiatives, see https://cordis.europa.eu/programme/rcn/703191/en + NI4OS, EXPANDS, EOSC-Nordic
- Call INFRAEOSC-04-2018 to connects ESFRIs PaNOSC, SSHOC, with EOSC, see https://cordis.europa.eu/programme/rcn/703194/en ESCAPE, EOSC-Life
- Call Call INFRAEOSC-06-2019-2020 to optimize the EOSC-portal and connect thematic clouds, see https://cordis.europa.eu/programme/rcn/703192/en

EOSC-Life, ENVRI-FAIR

EOSC Enhance

EOSC Governance Framework

EOSC Executive Board:

List of appointed members

- · Chair Karel LUYBEN representative of CESAER
- · Vice Chair Cathrin STÖVER representative of GEANT

Organisations and their representatives

- 1. CESAER represented by Karel LUYBEN
- 2. CESSDA ERIC represented by Ronald DEKKER
- 3. EMBL represented by Rupert LÜCK
- European Spallation Source ERIC represented by John WOMERSLEY
- 5. GÉANT represented by Cathrin STÖVER
- 6. OPENAIRE represented by Natalia MANOLA
- 7. Research Data Alliance (RDA) represented by Juan BICARREGUI
- 8. Science Europe represented by Stephan KUSTER

Individual experts

- 1. Sarah JONES
- 2. Jean-Francois ABRAMATIC
- 3. Jan HRUSAK

Sources: slide 21 of https://www.eosc-portal.eu/governance, https://www.eosc-portal.eu/governance,

https://ec.europa.eu/info/news/results-call-applications-selection-members-expert-group-members-executive-board-eosc-2018-nov-23_en

Thank you, Questions?

31