Simulating gas dynamics in galaxies: A 3D view of star formation and feedback

Stefanie Walch

I.Physics Institute, University of Cologne D. Seifried, F. Dinnbier, S. Haid, A. (University of Cologne) T. Naab, T.-E. Rathjen (MPA Garching) P. Girichidis (AIP Potsdam) R. Wünsch (Czech Academy of Sciences, Prague) R. Klessen, S. Glover (ITA Heidelberg) P. Clark (Cardiff University)

711. WE-Heraeus-Seminar 'The Science Cloud' Bad Honnef , 15.1.2020

nfrared

(Hay

source: wikimedia

Gamma-Ray

Multi-wavelength Milky Way

superimposed contours: CO survey (Dame et al. 2001):

Volume filling fractions: Mihalas & Binney (1981); Kulkarni & Heiles (1988)

The life-cycle of gas in the multi-phase interstellar medium: A schematic view

Multi-phase ISM in a galactic disk Compression & Cooling Collapse & Fragmentation temperature dz 1×1019 5×1018 **Stellar feedback** -10 & -12 Dispersal -5×1018 -14 -1×1019

Molecular cloud hosting dense filaments

Star and star cluster formation

Bubbles on different spatial scales

1×1019

-1×1019

The conditions of star formation: setting the stage with an example

- Orion Nebula within the Orion A molecular cloud
- Nearest massive star-forming region
- Distance ~ 1,350 light years ~ 414 pc (parsec)
- Age ~ 3 Myr
- Mass ~ $10^5 M_{\odot}$
- Temp. (dense gas) ~ 10 K

An Orion Nebula Comparison

Spitzer Space Telescope • IRAC Visible: NOAO/AURA/NSF/A. Block/R. Steinberg oledo, Ohio) ssc2006-16c

NASA / JPL-Caltech / S.T. Megeath (University of Toledo, Ohio)

The conditions of star formation: setting the stage with an example

Kong+2018

Carma-Orion survey: velocity-resolved CO

CO forms at a visual extinction of $A_V > 1$ \Rightarrow dense gas with column density $\ge 2 \times 10^{21} \text{ cm}^{-2}$

velocity range red: 9.8 -12.1 km/s green: 7.3 – 9.6 km/s blue: 4.8 – 7.1 km/s

sound speed @ 10 K ~0.2 km/s

=> Gas in molecular clouds is subject to supersonic turbulence

The conditions of star formation: setting the stage with an example

Friesen +2017

Orange: NH₃ from the Greenbank Ammonia Survey (GAS)

very dense gas with high visual extinction of A_V>7 (column density ≥1.4 x 10²² cm⁻²)

Background: Blue: Spitzer WISE Large dynamic range in density within the molecular cloud

dense gas: 10² cm⁻³ ≤ n ≤ 10⁶ cm⁻³

prestellar cores: n > 10⁶ cm⁻³

2 pc

The impact of star formation: Massive star formation and feedback in Orion

discovered in 2016 with VLTI-Gravity

Trapezium Cluster (Orion Nebula) NASA & K. Luhmann (Harward-Smithonian CfA) STScI-PRC00-19, WFPC2, NICMOS (Infrared)

The multi-phase interstellar medium: setting the stage with an example

Molecular Η. Cloud Pillar la **Ionization Fronts** Pillar II Dillar Shock-compressed Massive Ionizing molecular gas Stars Pillar Ib Molecular Cloud H₂ H II Region

Interior

Pattle+2018 Magnetic field structure from dust polarization

Multi-phase interstellar medium

The impact of star formation: The signatures of stellar feedback are ubiquitous in the ISM Stellar feedback driven bubbles in the Lobster Nebula (NGC 6357)

Stellar feedback:

-UV radiation -Radiation pressure -Stellar winds -Type II Supernovae

Blue: ionized gas Red: dust Image taken from: APOD 26.12.2018

The colour composite shows Red: CO (1-0), green: H α , blue: CII

Rendering of Haid, SW+2019 simulation with POLARIS (Reissl+2018) (Image Credit: S. Reissl)

New SILCC simulations: SuperSILCC

Stellar winds, Ionizing radiation, Supernovae + Cosmic Rays

Rathjen +in prep. 10^{-5} 10^{-3} 10^{-1} 10^{1} 10^{3} 10^{5} 10^{7} 10^{-1} 10^{0} 10^{1} 10^{-5} 10^{-3} 10^{-1} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10^{-5} 10

SILCC Project Simulating the LifeCycle of Molecular Clouds

University of Cologne: S. Walch, D. Seifried, F. Dinnbier, S. Haid
MPA Garching: T. Naab , T.-E. Rathjen
Czech Academy of Sciences Prague: R. Wünsch
ITA Heidelberg: R. Klessen, S. Glover
AIP Potsdam: P. Girichidis Cardiff University : P. Clark

AMR code FLASH 4 with...

- Self-gravity
- External galactic potential
- ideal MHD
- Heating & Cooling and
- Molecule Formation
- TreeRay (diffuse radiation for shielding + radiative transfer from point sources)
- Sink Particles with subgrid cluster model/massive star model
- Supernova Feedback
- Wind
- -Cosmic Rays

www.astro.uni-koeln.de/~silcc

Walch +15, Girichidis +16 Peters+17, Gatto+17, Seifried+17, +18

Numerical simulation and high-performance computing: 3 Gauss projects over past 7 years ~150 million core hours on SuperMuc @ Leibniz-Rechenzentrum Garching

How do we model this?

Let's have a look at the equations... (1) Ideal MHD equations + (self-)gravity

Continuity equation:

Conservation of momentum:

Conservation of total energy:

Induction equation:

where:

Closure relation: Ideal gas:

gravitational acceleration :

Chemical evolution: Multispecies

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0, \\ \rho \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} &= \frac{(\mathbf{B} \cdot \nabla) \mathbf{B}}{4\pi} - \nabla P_{\text{tot}} + \rho \mathbf{g}, \\ \frac{\partial E}{\partial t} + \nabla \cdot \left[(E + P_{\text{tot}}) \mathbf{v} - \frac{(\mathbf{B} \cdot \mathbf{v}) \mathbf{B}}{4\pi} \right] &= \rho \mathbf{v} \cdot \mathbf{g}, \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B}), \quad \nabla \cdot \mathbf{B} = 0, \leftarrow \text{Additional constraint} \\ \text{from Maxwell:} \\ \text{no magnetic} \\ \text{monopoles!} \\ \text{Information travels with the} \\ E = E_{int} + E_{kin} + E_{mag} \\ P = (\gamma - 1)\rho \epsilon \\ \mathbf{g}(\mathbf{x}) &= -\nabla \phi(\mathbf{x}) \\ \end{bmatrix}$$

$$\frac{\partial \rho_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{v}) = C_i (\rho, T, \ldots) - D_i (\rho, T, \ldots)$$

(Self-)Gravity

Solve the Poisson equation:

relating density and gravitational potential

$$abla^2 \phi(\mathbf{x}) = 4\pi G
ho(\mathbf{x})$$
Can be gas + stars + dark matter

Gravity is a long-range force!

The exact solution requires solving an N² problem.

Solution using the Green's function:

$$\nabla^2 u(\mathbf{x}) = f(\mathbf{x})$$

 $G(\mathbf{x}, \mathbf{x}') = -\frac{1}{4\pi} \cdot \frac{1}{|\mathbf{x} - \mathbf{x}'|}$

Laplacian is linear operator =>
$$u(\mathbf{x}) = \int_{\mathbf{x}'} d\mathbf{x}' G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}')$$

with response of system at x to point source at x' : $\nabla^2 G(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x} - \mathbf{x}')$ (where δ is the Dirac delta function)

Solution: **Newtonian potential**:

(Self-)Gravity

Solve the Poisson equation:

relating density and gravitational potential

$$\nabla^2 \phi(\mathbf{x}) = 4\pi G \rho(\mathbf{x})$$

Gravity is a long-range force! The exact solution requires solving an N² problem.

FLASH implements a multigrid method using V-Cycles

Tree-structure most efficient, e.g. Octal-spatial tree (Barnes & Hut 1986) for neighbor search and short/long-range gravitational forces

Adaptive quadtree where no square contains more than 1 particle

Diffuse radiation for molecule formation

- Molecules can shield themselves against the interstellar radiation field! ۲
- This process requires radiative transfer of diffuse radiation ٠
- Start with the full RT equation: • v = frequency of the photon package $\eta_v = \text{emissivity}$

 $\frac{\partial I_{\nu}}{\partial s} = \chi_{\nu} - \chi_{\nu} I_{\nu}$

 χ_{v} = opacity

٠

- $I_v =$ specific intensity
- s= path length along the ray

We neglect reemission:
$$I_{\nu} = I_{\nu,0}e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} \int_{v}^{v} d\tau'_{\nu}$$
, source function

 τ_v = optical depth

 S_v = source function

We neglect 2^{nd} term; this is ok if $S_v \ll I_{v,0}$ and optical depth τ_v is not too large.

=> Need to determine τ_v along a large number of rays, i.e. determine column density of absorber along the rays

TreeCol Clark, Glover & Klessen(2012) FLASH implementation: Wünsch +2018

- Implementation based on an improved version of the Barnes-Hut tree written by R. Wünsch (FLASH 4.3 release)
- Large number of rays still too expensive
- Make use of fact that each tree node stores information necessary for computing column densities
- Span a HealPix sphere from each cell
- During tree-walk to compute gravitational forces: map projected column density of tree-nodes onto this sphere
- To compute the projected column density we need
 - the mass of the node
 - the node position with respect to the current cell
 - the size of the node
- We compute:
 - total column density -> total Av
 - total H₂ and CO column -> self-shielding
 - dust attenuation

 $\chi(N_{\rm H}) = \frac{4\pi \int_0^\infty J_\nu \kappa_\nu \exp\left(-\kappa_\nu \Sigma\right) \,\mathrm{d}\nu}{4\pi \int_0^\infty J_\nu \kappa_\nu \,\mathrm{d}\nu},$

TreeRay: New radiative transfer algorithm Wünsch, SW, in prep.

Healpix tesselation: Looking into different directions from each cell $F_{tot,2}$ F_0 F_0 E_2 Q_2 C_2 C_3 C_3

$$F_0 = \sum_{i=N-1}^{0} \left[\frac{\varepsilon_i}{4\pi r_i^2} - \sum_{j=i+1}^{N} \underbrace{\alpha_j F_{ij}}_{\alpha_\star \rho^2/m^2} \frac{F_{ij}}{F_{\text{tot},i}} \mathrm{d}V_{ij} \right]$$

where F_{ij} is flux from source *j* at segment *i* and $dV_{ij} = \frac{1}{3} \sum [(r_j - r_i)^3 - (r_j - r_{i+1})^3] d\Omega$ absorption $\sim F_{ij}/F_{\text{tot},i}$ where $F_{\text{tot},i}$ is total flux coming from all rays intersecting with segment $i \rightarrow$ iterations needed

Strengths of TreeRay

European Research Council

Re-processing of emission from radiatively cooling, high Mach number shock fronts can be treated!

Multiple point sources can be treated at very little extra cost

TreeRay test: 100 massive stars ionize a molecular cloud

European Research Council

★ Treat many 100 sources of radiation (every cell can be a source)

★ VERY SMALL computational cost if gravity is included!

★ First successful applications in large-scale 3D simulations

TreeRay allows us to simulate star cluster formation with thousands of radiative sources!

4.5

35

З

2.5

2

1.5

1

0.5

-8

-8.5

-9 -9 5

-10

-10.5

-11

Proof-of-concept published by Walch & Wünsch in the Starbench II code comparison project (Bisbas et al. 2015)

Scaling of TreeRay with # sources

SILCC-ZOOM: Galactic zoom-in calculations:

Zoom-in calculations for 2 clouds: Column density in HI, H₂, and CO

Projection

Comparison of simulations and observations

★ Requires post-processing of the data with radiative transfer tools i.e. RADMC-3D, POLARIS, CLOUDY, MAPPINGS-V

★ Pipeline for FLASH-to-RADMC-3D available

CII line emission study Franeck +2019 with RADMC-3D PhD thesis of A. Franeck 10/2018

Rendering of Haid+18b simulation with POLARIS (Image Credit: S. Reissl)

State-of-the-art multi-wavelength data is available!

X-ray: NASA/CXC/PSU/L.Townsley et al.; Optical: NASA/STScI; Infrared: NASA/JPL/PSU/L.Townsley et al.; Release: 17.4.2012

Synthetic CO emission maps for 3D molecular clouds

MC1 different LOS

green: observable area blue: optically thick region

MC2 different LOS

Log (Intensity [K km s⁻¹])

Master thesis of E. Borchert, Borchert et al., in prep.

Synthetic CO emission maps for 3D molecular clouds

BPT Diagrams

Emission from Supernova remnants

European Research Council

Post-processing of simulation by Seifried, SW+2018:

Supernova interacting with a molecular cloud; Synthetic emission: Mappings V

E. Makarenko, SW, S. Clarke + in prep.

Following the cooling radiation in different energy bands with MAPPINGS V (Sutherland+2018): Supernova in a fractal cloud

Walch, Clarke +in prep.

Deficit of molecular gas near strong sources of soft X-rays (e.g. X-ray flares)

⇒We see that molecules are destroyed by X-rays

⇒They essentially have the same effect than Cosmic Rays

⇒Equilibrium models predict destruction by He⁺, but we find locally generated far-UV emission by collisions between nonthermal electrons and H₂ to dominate!

Mackey, SW+2019

The colour composite shows Red: CO (1-0), green: H α , blue: CII

Rendering of Haid, SW+2019 simulation with POLARIS (Reissl+2018) (Image Credit: S. Reissl)

Conclusions

- Apart from smart ideas: progress depends on available & future HPC technologies
- In addition: innovative software developments:
 - Efficient, hybrid parallel methods
 - New numerical algorithms, i.e. higher order schemes
 - On-the-fly data analysis?
 - Machine-learning / Neural network plugins
- Big Data: 1 snapshot 13 GB; Restart file 40 GB
 - 1 simulation: 15-20 TB
- It is essential to integrate innovative concepts, uniting physics and computing, in the teaching curriculum

Gauss Centre for Supercomputing

