Simulating gas dynamics in galaxies: A 3D view of star formation and feedback

Stefanie Walch

I.Physics Institute, University of Cologne D. Seifried, F. Dinnbier, S. Haid, A. (University of Cologne) T. Naab, T.-E. Rathjen (MPA Garching) P. Girichidis (AIP Potsdam) R. Wünsch (Czech Academy of Sciences, Prague) R. Klessen, S. Glover (ITA Heidelberg) P. Clark (Cardiff University)

711. WE-Heraeus-Seminar 'The Science Cloud' Bad Honnef , 15.1.2020

Gauss Centre for Supercomputing

source: wikimedia

Gamma-Ray

(-ray

nfrared

Multi-wavelength Milky Way

superimposed contours: CO survey (Dame et al. 2001):

Volume filling fractions: Mihalas & Binney (1981); Kulkarni & Heiles (1988)

The life-cycle of gas in the multi-phase interstellar medium: A schematic view

Multi-phase ISM in a galactic disk hosting dense filaments Compression & Cooling Collapse & Fragmentation 1×10^{19} 5×10^{11} **Stellar feedback &** -12 **Dispersal** -5×10^{18} -14 -1×10^{19} -1×10^{19} 1×10^{19}

Bubbles on different spatial scales

Star and star cluster formation

Molecular cloud

The conditions of star formation: setting the stage with an example

- **Orion Nebula within the Orion A molecular cloud**
- **Nearest massive star-forming region**
- **Distance ~ 1,350 light years ~ 414 pc (parsec)**
- **Age ~ 3 Myr**
- **Mass** $\sim 10^5$ M_{\odot}
- **Temp. (dense gas) ~ 10 K**

An Orion Nebula Comparison

Spitzer Space Telescope • IRAC Visible: NOAO/AURA/NSF/A. Block/R. Steinberg ssc2006-16c

NASA / JPL-Caltech / S.T. Megeath (University of Toledo, Ohio)

The conditions of star formation: setting the stage with an example

Kong+2018

Carma-Orion survey: velocity-resolved CO

CO forms at a visual extinction of $A_V > 1$ **⇒dense gas with column density ≥ 2 x 1021 cm-2**

velocity range red: 9.8 -12.1 km/s green: 7.3 – 9.6 km/s blue: 4.8 – 7.1 km/s

sound speed @ 10 K ~0.2 km/s

=> Gas in molecular clouds is subject to supersonic turbulence

The conditions of star formation: setting the stage with an example

Friesen +2017

Orange: NH₃ from the **Greenbank Ammonia Survey (GAS)**

very dense gas with high visual extinction of A_V>7 **(column density ≥1.4 x 1022 cm-2)**

Background: Blue: Spitzer WISE **Large dynamic range in density within the molecular cloud**

dense gas: 102 cm-3 ≤ n ≤ 106 cm-3

prestellar cores: n > 106 cm-3

2 pc

The impact of star formation: Massive star formation and feedback in Orion

discovered in 2016 with VLTI-Gravity

Trapezium Cluster (Orion Nebula) NASA & K. Luhmann (Harward-Smithonian CfA) STScI-PRC00-19, WFPC2, NICMOS (Infrared)

The multi-phase interstellar medium: setting the stage with an example

Magnetic field structure from dust polarization

Multi-phase interstellar medium

The impact of star formation: The signatures of stellar feedback are ubiquitous in the ISM

Stellar feedback driven bubbles in the Lobster Nebula (NGC 6357)

Stellar feedback:

-**UV radiation** -**Radiation pressure** -**Stellar winds** -**Type II Supernovae**

Blue: ionized gas Red: dust Image taken from: APOD 26.12.2018

The colour composite shows Red: CO (1-0), green: $H\alpha$, blue: CII

Rendering of Haid, SW+2019 simulation with POLARIS (Reissl+2018) (Image Credit: S. Reissl)

New SILCC simulations: SuperSILCC

Stellar winds, Ionizing radiation, Supernovae + Cosmic Rays

 $\frac{10^{-1}}{10^{-1}}$ $\frac{10^{1}}{10^{3}}$ $\frac{10^{5}}{10^{-5}}$ $\frac{10^{-1}}{10^{-1}}$ $\frac{10^{0}}{10^{-1}}$ $\frac{10^{1}}{10^{-5}}$ $\frac{10^{-5}}{10^{-3}}$ $\frac{10^{-1}}{10^{-5}}$ $\frac{10^{-5}}{10^{-3}}$ $\frac{10^{-1}}{10^{-5}}$ $\frac{10^{-3}}{10^{-3}}$ $\frac{10^{-1}}{10^{-9}}$ $\frac{10^{-7}}{10^{-7}}$ 10^{-5} 10^{-3} Rathjen +in prep.

SILCC Project SImulating the LifeCycle of Molecular Clouds

University of Cologne: S. Walch, D. Seifried, F. Dinnbier, S. Haid MPA Garching: T. Naab , T.-E. Rathjen Czech Academy of Sciences Prague: R. Wünsch ITA Heidelberg: R. Klessen, S. Glover AIP Potsdam: P. Girichidis Cardiff University : P. Clark

Cooling & Collapse Walch et al. 100_{pc} **50 AU Walch** Walch et al. (201) al., in pre $t = 0.38$ proposed simulation 0.08_{pc} 3 pc 2 kpc Walch et al., in prep. Walch et al. (2012a) Peters et al. (2010

Stellar Feedback & Outflows

AMR code FLASH 4 with…

- **Self-gravity**
- **External galactic potential**
- **ideal MHD**
- **Heating & Cooling and**
- **Molecule Formation**
- **TreeRay (diffuse radiation for shielding + radiative transfer from point sources)**
- **Sink Particles with subgrid cluster model/massive star model**
- **Supernova Feedback**
- **Wind**
- -**Cosmic Rays**

www.astro.uni-koeln.de/~silcc

Walch +15, Girichidis +16 Peters+17, Gatto+17, Seifried+17, +18

Numerical simulation and high-performance computing: 3 Gauss projects over past 7 years ~150 million core hours on SuperMuc @ Leibniz-Rechenzentrum Garching

How do we model this?

Let's have a look at the equations… (1) Ideal MHD equations + (self-)gravity

Continuity equation:

Conservation of momentum:

Conservation of total energy:

Induction equation:

 $$

Closure relation: Ideal gas:

gravitational acceleration :

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0,
$$
\n
$$
\rho \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{v} = \frac{(\mathbf{B} \cdot \nabla)\mathbf{B}}{4\pi} - \nabla P_{\text{tot}} + \rho \mathbf{g},
$$
\n
$$
\frac{\partial E}{\partial t} + \nabla \cdot \left[(E + P_{\text{tot}}) \mathbf{v} - \frac{(\mathbf{B} \cdot \mathbf{v}) \mathbf{B}}{4\pi} \right] = \rho \mathbf{v} \cdot \mathbf{g},
$$
\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}), \quad \nabla \cdot \mathbf{B} = 0, \leftarrow \text{Additional constraint from Maxwell: nonmagnetic monopoles!}
$$
\n
$$
\text{Information travels with the special information travels with the second } \langle \mathbf{v} \rangle = E_{\text{int}} + E_{\text{kin}} + E_{\text{mag}} \quad \text{speed of sound } / \text{ the Alfven speed} \langle \mathbf{v} \rangle = (\gamma - 1)\rho \epsilon \quad \text{csquared} \sim \mathbf{T}^{1/2}
$$
\n
$$
\mathbf{g}(\mathbf{x}) = -\nabla \phi(\mathbf{x}) \quad \text{each number, Alfvenic Mach number}
$$

Chemical evolution: Multispecies $\frac{\partial p_i}{\partial t} + \nabla \cdot (\rho_i \mathbf{v}) = C_i (\rho, T, \ldots) - D_i (\rho, T, \ldots)$

(Self-)Gravity

Solve the Poisson equation:

relating density and gravitational potential

$$
\nabla^2 \phi(\mathbf{x}) = 4\pi G \rho(\mathbf{x})
$$

Can be gas + stars + dark matter

Gravity is a long-range force!

The exact solution requires solving an N^2 problem.

Solution using the **Green's function**:

$$
\nabla^2 u(\mathbf{x}) = f(\mathbf{x})
$$

 $G(\mathbf{x},\mathbf{x}')=-\frac{1}{4\pi}\cdot\frac{1}{|\mathbf{x}-\mathbf{x}'|}.$

Laplacian is linear operator =>
$$
u(\mathbf{x}) = \int_{\mathbf{x}'} d\mathbf{x}' G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}')
$$

with response of system at x $\nabla^2 G(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x} - \mathbf{x}')$ to point source at x' : (where δ is the Dirac delta function)

Solution: **Newtonian potential**:

(Self-)Gravity

Solve the Poisson equation:

relating density and gravitational potential

$$
\nabla^2 \phi(\mathbf{x}) = 4\pi G \rho(\mathbf{x})
$$

Adaptive quadtree where no square contains more than 1 particle

Gravity is a long-range force! The exact solution requires solving an N^2 problem.

FLASH implements a multigrid method using V-Cycles

Tree-structure most efficient, e.g. Octal-spatial tree (Barnes & Hut 1986) for neighbor search and short/long-range gravitational forces

Diffuse radiation for molecule formation

- Molecules can shield themselves against the interstellar radiation field!
- This process requires radiative transfer of diffuse radiation
- Start with the full RT equation:

ν = frequency of the photon package η_{v} = emissivity

 $\frac{\partial I_{\nu}}{\partial s} = \chi_{\nu} - \chi_{\nu} I_{\nu}$

 χ_{v} = opacity

- I_v = specific intensity
- s= path length along the ray

• We neglect reemission:

$$
I_{\nu}=I_{\nu,0}e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}}\int_{0}^{\tau_{\nu}}d\tau_{\nu}',
$$

 τ_{v} = optical depth

 S_v = source function

We neglect 2^{nd} term; this is ok if $S_v \ll I_{v,0}$ and optical depth τ_v is not too large.

 \Rightarrow Need to determine τ_{v} along a large number of rays, i.e. determine column density of absorber along the rays

TreeCol Clark, Glover & Klessen(2012) FLASH implementation: Wünsch +2018

- **Implementation based on an improved version of the Barnes-Hut tree written by R. Wünsch (FLASH 4.3 release)**
- **Large number of rays still too expensive**
- **Make use of fact that each tree node stores information necessary for computing column densities**
- **Span a HealPix sphere from each cell**
- **During tree-walk to compute gravitational forces: map projected column density of tree-nodes onto this sphere**
- **To compute the projected column density we need**
	- **the mass of the node**
	- **the node position with respect to the current cell**
	- **the size of the node**
- **We compute:**
	- **total column density -> total Av**
	- **total H2 and CO column -> self-shielding**
	- **dust attenuation**

 $\chi(N_{\rm H})=\frac{4\pi\int_0^\infty J_\nu\kappa_\nu\exp\left(-\kappa_\nu\Sigma\right)\,{\rm d}\nu}{4\pi\int_0^\infty J_\nu\kappa_\nu\,{\rm d}\nu},$

TreeRay: New radiative transfer algorithm Wünsch, SW, in prep.

Healpix tesselation: Looking into different directions from each cellF Flux F_0 at target cell from the ray:

$$
F_0 = \sum_{i=N-1}^0 \left[\frac{\varepsilon_i}{4\pi r_i^2} - \sum_{j=i+1}^N \underbrace{\alpha_j F_{ij}}_{\alpha \star \rho^2/m^2} \frac{F_{ij}}{F_{\text{tot},i}} dV_{ij} \right]
$$

where F_{ij} is flux from source *j* at segment *i* and $dV_{ij} = \frac{1}{3} \sum [(r_i - r_i)^3 - (r_i - r_{i+1})^3] d\Omega$ absorption $\sim F_{ij}/F_{tot,i}$ where $F_{tot,i}$ is total flux coming from all rays intersecting with segment $i \rightarrow$ iterations needed

Strengths of TreeRay

Re-processing of emission from radiatively cooling, high Mach number shock fronts can be treated!

Multiple point sources can be treated at very little extra cost

TreeRay test: 100 massive stars ionize a molecular cloud

European Research Counci

★ Treat many 100 sources of radiation (every cell can be a source)

★ VERY SMALL computational cost if gravity is included!

★ First successful applications in large-scale 3D simulations

TreeRay allows us to simulate star cluster formation with thousands of radiative sources!

 4.5

 35

 \mathbf{R}

 2.5

 $\overline{2}$

 1.5

 $\mathbf{1}$

 0.5

 -7.5

 -8.5

-9

 $Q₅$

 -10

 -10.5

 -11

Proof-of-concept published by Walch & Wünsch in the Starbench II code comparison project (Bisbas et al. 2015)

Scaling of TreeRay with # sources

SILCC-ZOOM: Galactic zoom-in calculations:

Zoom-in calculations for 2 clouds: Column density in HI, H₂, and CO

Projection

Comparison of simulations and observations

★ Requires post-processing of the data with radiative transfer tools i.e. RADMC-3D, POLARIS, CLOUDY, MAPPINGS-V

«**Pipeline for FLASH-to-RADMC-3D available**

CII line emission study Franeck +2019 with RADMC-3D PhD thesis of A. Franeck 10/2018

Rendering of Haid+18b simulation with POLARIS (Image Credit: S. Reissl)

State-of-the-art multi-wavelength data is available!

X-ray: NASA/CXC/PSU/L.Townsley et al.; Optical: NASA/STScI; Infrared: NASA/JPL/PSU/L.Townsley et al.; Release: 17.4.2012

Synthetic CO emission maps for 3D molecular clouds

MC1 different LOS

green: observable area blue: optically thick region

MC2 different LOS

Log (Intensity [K km s⁻¹])

Master thesis of E. Borchert, Borchert et al., in prep.

Synthetic CO emission maps for 3D molecular clouds

BPT Diagrams

Emission from Supernova remnants

European Research Council

Post-processing of simulation by Seifried, SW+2018: Supernova interacting with a molecular cloud; Synthetic emission: Mappings V

Following the cooling radiation in different energy bands with MAPPINGS V (Sutherland+2018): Supernova in a fractal cloud

Walch, Clarke +in prep.

Deficit of molecular gas near strong sources of soft X-rays (e.g. X-ray flares)

Þ**We see that molecules are destroyed by X-rays**

Þ**They essentially have the same effect than Cosmic Rays**

Þ**Equilibrium models predict destruction by He+ , but we find locally generated far-UV emission by collisions between nonthermal electrons and H2 to dominate!**

Mackey, SW+2019

The colour composite shows Red: CO (1-0), green: $H\alpha$, blue: CII

Rendering of Haid, SW+2019 simulation with POLARIS (Reissl+2018) (Image Credit: S. Reissl)

Conclusions

- **Apart from smart ideas: progress depends on available & future HPC technologies**
- **In addition: innovative software developments:**
	- **Efficient, hybrid parallel methods**
	- **New numerical algorithms, i.e. higher order schemes**
	- **On-the-fly data analysis?**
	- **Machine-learning / Neural network plugins**
- **Big Data: 1 snapshot 13 GB; Restart file 40 GB**
	- **1 simulation: 15-20 TB**
- **It is essential to integrate innovative concepts, uniting physics and computing, in the teaching curriculum**

