Brain-Inspired Computing

An Introduction to the Heidelberg Accellerated Analog Neuromorphic Hardware Architecture BrainScaleS

> A Platform for Bio-Inspired Al based on Hybrid Plasticity Johannes Schemmel

Electronic Vision(s) Group Kirchhoff Institute for Physics Heidelberg University, Germany

Electronic Vision(s)

Kirchhoff Institute of Physics, Heidelberg University

Founded 1995 by Prof. Karlheinz Meier (†2018)

- 1995 HDR vision sensors
- 1996 analog image processing
- 2000 Perceptron based analog neural networks: EVOOPT and HAGEN
- 2003 First concepts for spike based analog neural networks
- 2004 First accelerated analog neural network chip with short and long term plasticity: Spikey

HAGEN: Perceptron-based Neuromorphic chip introduced:

- accelerated operation
- mixed-signal Kernels

igital control logic 8 digital to analog convertes 128 input neurons

64 output neurons analog weight storage bidirectional LVDS IO cell

SPIKEY: spike-based Neuromophic chip

introduced:

- fully-parallel Spike-Time-Dependent-Plasticity
- analog parameter storage for calibratable physical model

Perceptron model

- used in Machine Learning
- vector-matrix multiplication

$$f\left(\sum_i w_i x_i + b
ight)$$

 simple non-linear activation function f (ReLU):

Spike-based model

- timecontinuous dynamical system
- vector-matrix multiplication
- complex nonlinearities
- binary neuron output
- allows to model biological learning mechanisms

Xherdan Shaqiri bicycle kick EM 2016

Xherdan Shaqiri bicycle kick EM 2016

Action

1.

- continuous time
- low latency

Xherdan Shaqiri bicycle kick EM 2016

> 100 Watt

20 Watt

100 – 200 Milliseconds

The human brain is the ultimate cognitive system

- 100 billion neurons
 10000
 - connections per neuron (synapses)
- power consumption of the brain (approx.): <u>20 Watt</u>

Co-funded by the European Union

Human Brain Project

Why focus on the brain ? Three Reasons

Understanding the brain (Unifying Science Goal)

- · Underpins what we are,
- · Data & knowledge are fragmented,
- · Integration is needed,
- · Large scale collaborative approach is essential.

Understanding brain diseases (Society)

- Costs Europe over €800 Billon/year,
- Affects 1/3 people,
- · Number one cause of loss of economic productivity,
- · No fundamental treatments exist or are in sight
- · Pharma companies pulling out of the challenge.

Developing Future Computing (Technology)

- · Computing underpins modern economies,
- Traditional computing faces growing hardware, software, & energy barriers,
- Brain can be the source of energy efficient, robust, selfadapting & compact computing technologies,
- Knowledge driven process to derive these technologies is missing.

Neuromorphic Computing

Subproject 9 of the HBP Subproject Leader: Steve Furber Deputy Leader: Johannes Schemmel

Neuromorphic Machines

- Algorithms and Architectures for Neuromorphic Computing
 - Theory
 - Applications

What is neuromorphic computing?

Implement relevant aspects of structure and function of biological circuits as analog or digital images on electronics substrates

relevant aspects?

Co-design pro

Major research qu

Structure

Cell Cores (Somas) - Networks (Axons and Dendrites) -Connections (Synapses)

Function Local Processing - Communication - Learning

Brain-Inspired Computing Bio-inspired artificial intelligence (Bio-AI)

modeling possibilities:

numerical model : digital simulation

represents model parameters as binary numbers : →integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

\rightarrow voltage, current, charge

Neuromorphic systems worldwide - State-of-the-art and complementarity

Biological realism

Ease of use

Many-core (ARM) architecture Optimized spike communication network Programmable local learning x0.01 real-time to x10 real-time Full-custom-digital neural circuits No local learning (TrueNorth) Programmable local learning (Loihi) Exploit economy of scale x0.01 real-time to x100 real-time Analog neural cores Digital spike communication Biological local learning Programmable local learning x10.000 to x1000 real-time

Principles of neural communication

- neurons integrate over space and time
- temporal correlation is important
- kind of mixed-signal system: action potential ↔ membrane voltage
- fault tolerant
- low power consumption \rightarrow 100 Billion neurons: 20 Watts

BrainScaleS : Neuromorphic computing with physical model systems

Consider a simple physical model for the neuron's cell membrane potential V:

$$C_{\rm m} \frac{dV}{dt} = g_{\rm leak} \left(E_{\rm leak} - V \right)$$

$$R = 1/g_{\text{leak}} V(t)$$

$$E_{\text{leak}} C_{\text{m}}$$

$$\frac{dV}{dt}_{bio} << \frac{dV}{dt}_{VLS}$$

→ accelerated neuron model

continuous time

- fixed acceleration factor (we use 10³ to 10⁵)
 no multiplexing of components storing model variables
 - each neuron has its membrane capacitor
 - each synapse has a physical realization

Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 neuromorphic chip

Time <i>Scales</i>	Nature + Real- time	Simulation	Accelerated Model
Causality Detection	10 ⁻⁴ s	0.1 s	10 ⁻⁸ s
Synaptic Plasticity	1 s	1000 s	10 ⁻⁴ s
Learning	Day	1000 Days	10 s
Development	Year	1000 Years	3000 s
12 Orders of Magnitude			
Evolution	> Millenia	> 1000 Millenia	> Months
> 15 Orders of Magnitude			

BrainScaleS-1 multi-level architecture

BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks
- AdEx neurons with very high synaptic imput count (> 10k)
- Wafer-scale event communication

Wafer Module

Stochastic model example: sampling from multiple neural Boltzmann machines

BrainScaleS-1:

Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical computing system performing autonomously

but

Turing-based computing is used in multiple places:

- training
- system initialization
- hardware calibration
- runtime control
- input/output data handling

Shortening the hardware – software loop : Analog neuromorphic system as coprocessor

BrainScaleS-2 (BSS-2) ASIC

- 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)
- 128k synapses
- 512 neural compartments (Sodium, Calcium and NMDA spikes)
- two SIMD plasticity processing units (PPU)
- PPU internal memory can be extended externally

- fast ADC for membrane voltage monitoring
- 256k correlation sensors with analog storage (> 10 Tcorr/s max)
- 1024 ADC channels for plasticity input variables
- 32 Gb/s neural event IO
- 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

BrainScaleS-2

- 8Gbit/s raw bandwidth between BSS ASIC and host
- Latency < 300ns
- Event rates up to 250MHz real-time (250kHz bio) full duplex

Outlook : Edge-computing with BrainScaleS

image from C. Cao, https://doi.org/10.3390/environments6020025

Training deep networks with time-to-first-spike coding

J. Goeltz et. al, "Fast and deep neuromorphic learning with time-to-first-spike coding", arXiv:1912.11443

Learning and plasticity

- → Adaptive Exponential Integrate and Fire (AdExp)
- ✓ biological relevant network topologies
 → more than 10k synapses per neuron
- high communication bandwidth for scalability
 → wafer-scale integration

Problem:

how to fix millions of parameters

- network topology
- neuron sizes and parameters
- synaptic strengths

Trivial solution: everything is pre-computed on the host-computer

- requires precise calibration of hardware
- takes long time (much longer than running the experiment on the accelerated system)

Better approach: hardware in-the-loop training

makes use of high emulation speed

Biological solution : Integrate some kind of learning or plasticity mechanism

- local feed-back loops, aka *training*, adjust system parameters
- no calibration of synapses necessary \rightarrow learning replaces calibration
- plastic network topology

Complexity of synaptic plasticity is key to biological intelligence

Protein complex organization in the postsynaptic density (PSD)

"Organization and dynamics of PDZdomain-related supramodules in the postsynaptic density" W. Feng and M. Zhang, Nature Reviews NS, 10/2009

- > 6000 genes primarily active in the brain
- high percentage of regulatory RNA
- evidence for epigenetic effects in plasticity

Protein-protein interaction map (...) of post-synaptic density

"Towards a quantitative model of the post-synaptic proteome"

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

BrainScaleS-2: Hybrid Plasticity

Stabilizing firing rates with spike time dependent plasticity

Experimental example : structural plasticity

256 pre-synaptic inputs mapped to single dendrite with 32 active synapses plasticity rule combines structural, STDP and homeostatic terms:

if
$$\omega \ge \theta_{rand}$$
:
 $\omega' \leftarrow \omega$
 $+\lambda_{STDP}(c_{+} + c_{-})$
 $-\lambda_{hom} (\nu + \nu_{target})$
 $a' \leftarrow a$
else:
 $\omega' \leftarrow \omega_{init}$
 $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, unpublished work, 2018

Supervised learning using Hybrid Plasticity

0.0 s

256 pre-synaptic inputs mapped to single dendrite with 32 active synapses plasticity rule combines structural, STDP and homeostatic terms:

dots represent realized (active) synapses
ten target groups (with three dendrites each)
trained simultaneously
1.5 s wall time needed for emulation

if
$$\omega \ge \theta_{rand}$$
:
 $\omega' \leftarrow \omega$
 $+\lambda_{STDP}(c_{+} + c_{-})$
 $-\lambda_{hom} (\nu + \nu_{target})$
 $a' \leftarrow a$
else:
 $\omega' \leftarrow \omega_{init}$
 $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, unpublished work, 2018

Supervised learning using Hybrid Plasticity

1554.7 s

Hybrid Plasticity allows simultaneous rules for:

- strucutral optimization
- homeostatic balance
- pre-post correlation and more

using software running in parallel to the analog neuron operation

If
$$\omega \ge \theta_{rand}$$
:
 $\omega' \leftarrow \omega$
 $+\lambda_{STDP}(c_{+} + c_{-})$
 $-\lambda_{hom} (\nu + \nu_{target})$
 $a' \leftarrow a$
else:
 $\omega' \leftarrow \omega_{init}$
 $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, unpublished work, 2018

What I have learned

- analog computing is feasible
 - model biology for neuroscience
 - cost and energy efficient inference of DCNNs
 - edge computing (sensor data preprocessing)
- works best if closely coupled to SIMD CPU
 - Software-based implementation of learning algorithms
 - learning can include calibration
 - supports hyper-parameter learning (L2L)
 - initialization
 - configuration
 - debugging
 - calibration
- future considerations
 - find the optimum hybrid (digital vs. analog) system for a given technology
 - replacing CMOS will be very difficult (>20 years from now)
 - CMOS is good enough, but cost might be prohibitive
 → efficient in-memory computing needs large amounts of silicon

NICE 2020 March 17 - 20th 2020

Neuro-Inspired Computational Elements Workshop

Im Neuenheimer Feld 227 D-69120 Heidelberg Germany

Workshop: Tutorials: March 17-20th 2020 March 20th 2020

Heidelberg - Germany

Kirchhoff Institute for Physics

