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The overall picture

§ Scientific experiments
§ produce big data
§ incorporate results.

§ Big data analytics 
§ delivers views of the data, summaries, 

predictions
§ controls noise and error.

§ Foundations
§ Sciences
§ Computer architectures

§ GPU, FPGA, Multicore,...
§ Software frameworks

§ Streams, Hadoop, SQL,...
§ Algorithms
§ Statistical models

Experiments

Analytics



Artificial Intelligence
§ AI is about computer behavior 

that – if performed by humans –
would be considered intelligent.

§ It is about a task – humans 
perform many tasks!

§ What we consider “intelligent”:
§ Calculation, memorizing 

is no longer considered 
intelligent. Because 
computers are good at it?

§ Tying shoelaces is very 
difficult for robots. Are we as 
humans proud of this skill?

§ AI since 1956 (USA), 
1976 (Germany)

§ AI as a model of cognition
§ AI as a performer
§ AI as an analogy or

for science fiction



Artificial Intelligence classics
§ Planning
§ Logical Inference, Reasoning
§ Knowledge Representation
§ Natural Language Processing
§ Machine Learning
§ Multi-Agent Systems
§ Robotics
§ Cognition
§ Vision Understanding, Computer 

Graphics 
§ Games 1996 DeepBlue defeats Kasparow –

AI without machine learning



Machine Learning is
§ Part of computer science with

applications in all other areas.
§ Based on data

§ Well acquired data (Excel)
§ Given data bases (SQL)
§ Big data (Hadoop distributed

file system HDFS)
§ Structured data (graphs, 

facts)
§ Implemented on an architecture
§ Delivering an action.

Classification
§ Given:

examples {(x1, y1), (x2, y2)…} 
§ Find:

predictions f: X à Y,

such that the quality Q(Y, f(X))
is maximized.

§ Risk:
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Classes of machine learning algorithms

§ Induction of Decision Trees
§ Neural Networks, Convolutional

Neural Networks (deep learning)
§ Support Vector Machines
§ Clustering 
§ Probabilistic Graphical Models
§ Frequent Itemset Mining
§ Reinforcement, Q Learning
§ Time Series Classification, 

Clustering, Prediction

2016 alphaGo defeats Lee Sedol –
AI with machine learning



Machine learning

§ What makes computers learn?
§ Tight bounds for

§ Correctness
§ Precision, recall, AUC, …

§ Efficiency
§ Runtime, memory, 

communication, energy 
§ Robustness
§ Fairness

§ Inspection of data, 
interaction with experts

Experiments

Analytics



Deep learning

§ Machine learning algorithms 
need a sound theoretical basis.
§ Proven tight quality 

guarantees.
§ Robust against minor 

changes in the input data.
§ Verified combination of 

methods.
§ Applying machine learning 

requires to know the theoretical 
foundations of machine 
learning.

© Nature Communications/CC BY

Klaus-Robert Müller (TU Berlin), Wojciech
Samek (HHI, Berlin) developed a 
certification method for Deep Learning. 
Here, it shows by heat maps that the 
classification is based on features of the 
environment, not of the object.  This 
phenomenon is well known for DeepNeural
Networks. DOI: 10.1038/s41467-019-08987-4



Graphical Models

§ Graph G=(V,E)
§ Sufficient statistic

implicitly mapping joint 
vertex assignment into 
vector space

:  X --> Rd

§ Parameter vector to be 
learned:
q in Rd

§ Log partition function:
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Probabilistic inference

§ Marginal probabilities
! "# = %#|"' = %'

§ Partition function

( ) = *+ % , - %

§ Maximum A Posteriori (MAP) state
max
1∈ℵ

! %
§ Maximum likelihood parameter

max
4∈ℜ6

∏1∈8 !4 %

§ Complexity of computing the 
partition function depends on 
hardness of the integration. 
Closed form known for Gaussian, 
Poisson, Laplace, Weibull, … 
distributions.

§ For discrete random variables, 
belief propagation is efficient for 
tree structured graphs. 



Regularization, Reparametrization

§ Regularizations decrease the 
model complexity.
§ L 1,2 against overfitting 

§ Reparametrizations map the 
parameters to another space
§ Vector ∆∈ ℛ$ is a 

reparametrization of %
§ &:ℛ$ → ℛ) and & ∆ = %

Attention! Changing the number of 
parameters changes the 
independence structure. 
Look there!



Spatio-temporal random fields

§ The spatio-temporal graph is trained to predict each node’s maximum a posteriori probability 
with the marginal probabilities. 
§ Generative model predicting all nodes.

§ Dimension 
T x |V0| x | X| + 
[(T-1)(|V0|+3|E0|)+ |E0|] x |X|2

§ If edges in some subset represent similar relations and 
have a common state space, 
then they may share parameters.

§ Proof (Piatkowski 2018, p. 83 ff.)
§ Distance between true ! and estimated " ∆ is bounded
§ Sparsity in the estimate implies redundancy in the true parameter

§ Keeping the quality, 
regularization and reparametrization saves memory and learning becomes faster. 



Reparametrization compresses the model
§ Reparametrize model

D regularized by  L1, L2 norm
§ Quality is not at all less than 

MRF, 4NN.
§ Learning is faster.
§ There are not many changes over 

time. Model is highly 
compressed. 

Δt ≈θt+1 −θt

Several other proofs on error bounds available in literature.
For proofs regarding resource constraints s. Piatkowski 2018



Illustration of what machine learning research looks like

Probabilistic graphical models
§ Tight bounds for quality, while reducing

§ Memory
§ Energy 
§ Runtime

§ Theoretically well-based, 
not heuristic, 

§ Carefully implemented,
§ Empirically tested on several data sets. 

Experiments

Analytics
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Astrophysics

§ Explanation of dark matter and 
the apparent lack of antimatter 
in the universe

§ Find experimental indications 
for physics beyond the Standard 
Model

§ Astroparticle physics:
§ creation by dark matter 

annihilations;
§ journey of high energy

particles interstellar and
intergalactic space.

Physics
questions

Insight

Evaluation



IceCube

Extremely high-volume data 1 TB per day
Data analysis
§ form the trace of the neutrino, 
§ separate it from other particles,
§ estimate the energy
Breakthrough 2018
22.September 2017, a very high-energy neutrino 
is detected by IceCube. It points at the blazar TXS 
0506+056, 4 billion light years from Earth. 
Gamma ray observatories identify the same 
source of high-energy gamma rays.

Gen2 2021 - 2030



Interdisciplinary, empirical work for theory development
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The senses of astrophysics
Observatories of many kinds all around the 
earth. 
§ Gravitational  wave observatories 

LIGO Washington, Lousiana; VIRGO  Italy 
§ IceCube at the south pole looks for 

neutrinos, Gen2 – 100 TB /day
§ Cherenkov telescopes around the world: 

MAGIC, H.E.S.S., FACT – 1 TB / day
§ CTA North 20 telescopes, South 100 

telescopes – 100 TB /day
§ Square kilometer array (SKA) Australia, 

South Africa– 100 PB / day
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Machine learning analysis – deep learning on FACT

§ Designing the architecture
§ 2D-CNN on cleaned images (width, 

height, RGB) for signal-hadron-
separation

§ 3D-CNN including time on raw data
(some frames over time at each
position) end-to-end learning

§ Training, parameter optimization
§ On ground truth, on aggregated data, 

on every second frame (sliced)
§ Problem: 

No theoretically well based guarantees!

2D 
binary

2D
mean

3D
sliced

Stefan Rötner „Deep Learning on Raw Telescope Data“



Machine learning analysis – deep learning on IceCube

§ Reconstruction of events by CNN
§ alerts to telescopes around

the world in real-time
§ Muon energy resolution

§ Problem: 
no use of prior knowledge (as is
done by probabilistic models)

§ Prediction of waveform at each
DOM by generative neural network
§ Train on all 7 parameters
§ Fix 5, predict two z,t, azimuth, zenith, energy fixed

IceCube Collaboration, Mirco Hünnefeld „Reconstruction Techniques in IceCube…“ 
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Machine learning analysis – SVM on FACT

Support vector machine (SVM) determines an 
optimal separating hyperplane, proofs given.
§ Optimization in O(n3) 

! " =∑$%&' "$ − &
)∑$
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§ Kernel functions, RBF, arccos

. = 012234 , +
, +

5& . = 467. + 9 − . 234.
§ Nyström approximation of the kernel matrix

for less memory and runtime O(nm2)
Split n X n kernel matrix into
m X m, n X m -- m X n need not be calculated

FACT gamma separation
§ 170 000 examples

Training epochs

Martin Senz „Effiziente Kernel Basierte Klassifikation von Teleskop-Daten…“
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Machine learning analysis – unfolding on FACT

§ Energy distribution of gamma
particles

§ is reconstructed from
measurements

§ Detector matrix Ri,j

f :Y →ℜ

g : X →ℜ

R x y( )
X j

∫
Yi

∫ dx dy Detector matrix cannot be inverted

f̂impossible = R
−1g



Iterative Bayesian unfolding (IBU) 

§ Bayesian approach
§ Estimate target density 

using Bayes law.
§ The prior is not accurate. 
§ Iterating replacements of the 

prior with the estimate of the 
previous iteration.

§ Problem: if the prior is updated 
too often, the result diverges 
from good estimate.

§ Stopping criterion needed!

P̂ Y = i | X = j( ) =
P̂ X = j |Y = i( ) P̂ Y = i( )
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DSEA – Deconvolution as classification

§ Turning deconvolution into a 
classification problem

§ Discretize the target energy,
consider it a class label.

§ Receive the histogram from 
simulation data.

§ Learn a classifier with 
confidence. 

§ Output confidence for each 
example.

fi = P Y = i( ) = f y( )
Yi

∫ dy ∀1≤ i ≤ I

t1 t2 t3 tI tI+1

Y1 Y2 . . . YI

Y

f



Enhancements DSEA+

§ DSEA diverges from the optimal 
estimate in further iterations.

§ DSEA+ re-weights the examples 
in each iteration by the ratio 
between the estimated 
probability and the probability of 
the unweighted training set.

§ DSEA+ speeds up by adaptive 
step size.

Earth Mover Distance (EMD): cost of transforming one histogram to another

0 5 100 5 10
Dsea iteration k

original Dsea
re-weighting fix



DSEA+ Results

§ The accuracy of DSEA , Ibu, and
Run, Earth Mover’s Distance
between the unfolding results
and the corresponding true
densities: the lower the better.

§ Each bar is obtained with the
best configuration evaluated on 
20 bootstrap samples. 

§ The FACT training set is too
small for uniform sub-sampling. 
Results are better for balanced
classes. appropriate uniformappropriate uniform

training density

FACT
EMD
to f

10-2

10-1

100
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Machine learning analysis – Random Forest on FACT

§ Filtering sensor data when they 
arrive.

§ Random Forest on FPGA or CPU 
– what is faster?

§ FPGAs can even compute all 
comparisons in 1 clock cycle and 
then traverse the tree using the 
precomputed.



Comparison FPGA, ARM

§ Concerning energy consumption, 
FPGA outperforms CPU.

§ For small decision trees, FPGAs 
are fine.

§ Disjunctive normal form 
representation of trees 
did not pay off. 

§ New implementation with 
unrolling and precomputing 
gives excellent throughput on 
ARM.

S. Buschjäger, K.Morik, Decision tree and random forest implementations  for fast filtering of sensor data



Direct implementation of machine learning on FPGA
Convergence of an MRF MAP estimation problem on 500 
points of a 23-dimensional dataset (mushroom) using an 
FPGA implementation that applies Evolutionary Optimization, 
comparing multiple per-bit mutation probabilities κ.

Comparison of power dissipation for multiple 
modern hardware components typically used for Machine Learning
(+ light bulb for reference, log. scale)

S.Mücke, Evolutionäre Optimierung pseudoboolescher Funktionen auf FPGA



Machine learning is an instrument of science

§ Sometimes the ground truth cannot be grasped by a 
human expert.

§ It is hidden 
§ in large volume, large dimension data
§ in noise
§ in nanoscopic or faraway  structures.

§ Machine learning digs into data from detectors   
lifting insights that were out of reach before.

§ Learned models must come with proven guarantees of 
their properties. 

§ Still a lot of work to do!

Experiments

Analytics



Summary

§ AI and ML
§ What machine learning (ML) is
§ Many classes of algorithms
§ What ML research does: graphical models

§ Physics and ML
§ Experiments: Ice Cube, FACT, CTA, SKA
§ Some learning algorithms on FACT data: 

§ Deep learning
§ SVM with Nyström approximation
§ Unfolding as classification
§ Random Forest, QUBO on FPGA, 

Crab nebular around crab pulsar
Mixed optical and X-Ray spectrum



Future work in SFB 876
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The gamma ray sky
§ Measurement hours of

sources of gamma rays measured by 
FACT

Crab (SNR)

Geminga pulsar
Milky way

hoursseen by the satellite EGRET



Skewed distribution challenging data analysis
§ Calibration, cleaning
§ Feature extraction
§ Signal separation
§ Energy estimation
§ A simulator provides labeled 

observations.
§ Gamma rays of high energy are 

rare events as opposed to 
hadrons, ratio 1 to 1000.

MAGIC I (2003) and MAGIC II (2009)
La Palma, Roque de los Muchachos
FACT telescope, same type, same place
Bockermann, Christian and Brügge, Kai and Buss, Jens and 
Egorov, Alexey and Morik,Katharina and Rhode, Wolfgang and 
Ruhe, Tim 
“Online Analysis of High-Volume Data Streams in Astroparticle Physics”  
Best Paper Award ECML PKDD 2015


