Posters

01	Markus Blank-Burian	WWU Cloud - Open Source based Clou Poster not Services at the University of Münster illness	ue to
02	Harry Enke	FAIR in astronomy context	
03	Anastasia Galkin	Daiquiri - Python based framework for the publication of scientific databases	
04	Zohreh Ghaffari + Catalina Sobrino Figaredo	A new multi-band optical image pipeline for the Magellan 6.5 m telescope	
05	Niraj Kandpal	Molecular Outflow Detection in G327: A 3D Approach	
06	Lars Künkel	Searching Pulsars Using Neural Networks	
07	Jörn Künsemöller	Metadata and User-Provided Data in the LOFAR Long Term Archive	
08	Man I Lam	PyParadise: A simultaneous pipeline of stellar and gas kinematics	
09	Abhishek Malik	Exoplanet detection using Machine Learning	
10	Jan Mayer	Entering NeuLAND: Analysis workflow preservation for a fair FAIR	
11	Martin Müller	Data Infrastructure at the University of Cologne's Institute for Nuclear Physics	
12	Annika Oetjens	Past planetary engulfment as a possible explanation for observed high stellar rotation on metal poor main sequence stars	
13	Oleksandra Razim	Towards reliable photometric redshifts with machine learning methods	

Posters

enedikt Riedel	Cloud burst for Multi-Messenger Astrophysics
ernd Schleicher	Machine Learning in Cherenkov Astronomy
lian Schwarz	The PAHN-PaN consortium at the NFDI
eniia Sysoliatina	Astronomy meets big data: Improving the Milky Way model with the billion-star surveyor Gaia
exander Trettin	From 2D to 3D to Graph Networks: Representing Detector Geometries in Neural Networks
eetu Verma	Classification of high-resolution solar Hα spectra using t-SNE
nristoph Welling	NuRadioMC and NuRadioReco – A Software Framework for the Radio Detector Community
bias Winchen	Prototypes for the Next Generation of Computing Backends in Radio-Astronomy
artin Wolf	BoostNumpy: Big Data Processing in C++ with Python convenience
	eetu Verma nristoph Welling obias Winchen artin Wolf

Out of competition: additional poster

WWU Cloud - Open Source based Cloud Services at the University of Münster

- IaaS self-service platform based on OpenStack/Ceph/Kubernetes
- Free of charge for faculty members
- Virtual machines (mainly for services) and data storage
- JupyterHub running in cloud for interactive data analysis, ideal for shared resource usage
- Hardware provided by DH-NRW via RDI-NRW project (5 cloud locations)
 - 1600 Cores, 25TB RAM, 10PB HDD, 2PB NVMe, 2x NVidia Tesla M10
 - Scientific consortia may use cloud hardware at multiple locations
- Poster: Overview, Architecture, JupyterHub, Outlook

FAIR Data

Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier F2. Data are described with rich metadata
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource available

Accessible

A1. (Meta)data are retrievable by their identifier using a standardised

IVOA Registry

DOI application

- A1.1 The protocol is open, free, and universally implementable
- A1.2 The protocol allows for an authentication and authorization
- procedure, where necessary

A2. Metadata are accessible, even when the data are no longer available

Interoperable

- 11. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (Meta)data use vocabularies that follow FAIR principles
- I3. (Meta)data include qualified references to other (meta)data

Re-Usable

- R1. (Meta)data are richly described with a pluralityof accurate and relevant attributesR1.1. (Meta)data are released with a clear and accessible data usage
- R1.3. (Meta)data meet domain-relevant community standard

https://www.astro-nfdi.de/how-fair-is-your-data

Findable

Use the QR-Code

- access the website
- select your favorite wavelength
- provide your estimate of the FAIRness of the data in the field

Queryable data sets VOTable, FITS Code to Data

Interoperable

Software

Example:

- data in the field of visible wavelength
- some pointers to arguments

Accessible

DOI metadata as discovery schema **OAI-PMH** support UCD, Semantics

> Data curation processes Data with CC0 license Software

Re-Usable

Heraeus-Seminar Science Cloud, Bad Honnef 2020, H. Enke + O. Michaelis (AIP)

<section-header>

Scientific archives hosted @AIP: APPLAUSE https://www.plate-archive.org, RAVE https://www.rave-survey.org, Gaia@AIP https://gaia.aip.de, MuseWIDE https://musewide.aip.de, CosmoSim https://www.cosmosim.org

Daiquiri features: Queryparser package to translate ADQL to backend SQL, an interactive query interface, asynchronous database queries, visualization tools, an IVOA compliant cone search API and a registry of registries implementation, metadata, access rights and user management, UCDs support, a cut-out API for data cubes, a contact form, DOI integration, an OAI PMI interface for harvesters, a meeting module and an integrated Wordpress for the documentation.

Technologies: Python 3, Django Framework, webserver apache, NGINX, gunicorn, Astropy, RabbitMQ, Celery, Redis, PostgresQL, MariaDB, Wordpress, Docker.

APPLAUSE Archives of Photographic Plates for Astronom	nical USE		Gala@AIP Query Documentation	Sudden Uller Mg MQ Cartan Lige	APPLAUSE Archives of Photographic PLots for Advensemical USE
Nome Project + Documentation + Database tables	 Query Viewer Contact Wiki 	Legin	Database status	SQL query	Home Project* Documentation* Database tables* Query Viewer Contact Wiki Anastasis Galkin*
Envelope from Lippert-Astrograph (F	Hamburg)	Digital object identifier	Nou are using the guest user. For a personal account, please sign up there is using 11.4 MB of its.	Place your 2002, Salahenet, devely in the fault and allow and solaring your respect it angle the boots mus can use the desponsements to planetaments boot boots to a specify the name of the resulting database to take and the single boots. These does a specify the name of the resulting database to take and/or sign a non it, to group associated queries in the publics. These does a specify the name of the solarity database to take and/or sign a non it, to group associated queries in the publics.	Metadata management Pisse did na schena, ablie, a skinn er a factor is show or efit is nezatar.
enverge	Archive: Lippert-Astrograph (Hamburg)	You can use the following DOI to one this envelope in a publication:	quota of 1.0 TB. The query jobs of the quest user will	Database - Columns - Simbad - Voielt - Examples -	SCHEMAS TWELES COLUMINS PUNCTIONS
Nonberger Strengens in Bergedert	Page number: Page order:	https://doi.org/10.17876/plate /dr.3/envelopes/101_8092	be automatically archived after one week.	EXAMPLES Momber of TGAS stars with parallax / parallax, error > 10	applause,dr3) anthine) anthine,jd applause,dr2 pitos anthine,jd
Lipport-Autrograph	Image size: 1496 × 1476 px			Histogram of TGAS G magnitudes	applause_dr1 exposure institute
LA 4 Z. and the fit	Image created: April 21, 2010, 9:53 a.m.	License	New Query Job	M4 globular cluster with geometric distances using ADQL	applaces_dr3_prov exposure_sub timestamp_insert
Abard	Nie tornat: JPEG File: DR3/covers/kAM-LA/LA00010_cover.jpg	۲	SQL query Core search	Me ground count cange respective. Gala data with 20455 photometry Count of the server field with the example.	preven timestang, ppdan 520 h
Annus		This envelope is published under the Attribution 4.0 International (CC BY 4.0).	Upisad VOTable s	Igraewy 1 SELECT gala_seurce_ids_gala.ra, gala.dec, gd/r_est 2 mem gr2_gala_seurce_gala, gd/z_centrib.geometric_distance_gd	stores, alb lightave
		Navigation	Runid: 2 D	3 MEET = CONTAINS(FORMITICES', gala.dec), CENCE(TES', 245.0862, -266.5222, 0.5)) 3 AND gala.gboi_g_mean_ang < 15	tegbook tegoage
and the second		Next envelope in this archive	Norunid 25	2 AND gala.source_id = gd.source_id	plan, jegange
whiled leggage		Back to everying	testmence 🗸		process
			2820-01-06-22-52-03-500979 2820-01-06-22-45-15-144446		Please select a schema, table, column or function in the browser above. Create new schema entry Create new schema entry Create new schema entry
			2820-01-06-22-43-14-669232 🖌	Table name Run Id Query language Queue gobular, ductor mytetts ADQ; SMinutes	Create new function entry Create new function entry
sully powered by Daiquiri		Impeint & Data Protection Statement	2820-01-06-22-40-16-720067		

Open Source and available on GitHub https://github.com/django-daiquiri

Also as docker compose setup https://github.com/django-daiquiri/daiquiri-docker-compose

A new multi-band optical image pipeline for the Magellan 6.5 m telescope.

Zohreh Ghaffari¹, Catalina Sobrino Figaredo¹, Martin Haas¹, Rolf Chini^{1,2}, Steven Willner³,

¹ Ruhr-University Bochum, Germany,² Universidad Catolica del Norte, Antofagasta, Chile,³ Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.

1. PISCO 5'x8' raw image in filters griz

3. Final r image 4'x4' combined from 21 4. Detection limits r ~ 26 mag dithered frames of 120 s

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト э **Outflow Detection in G327 : A 3D Approach** N. Kandpal¹, A. Sanchez Monge¹, Peter Schilke¹ ^{1.} First Institute Physics, Cologne, Germany

2 Dimensional Analysis

- We used 2D contour analysis to detect the outflows in G327.
- In Fig1 we can see blue and red shifted outflow distribution.
- In all around 20 outflows were found which we can see in green in Fig 2 showing their direction.

Outflow Detection in 3D : Method

Figure 1: Red and blue shifted contour in SiO overlayed over ALMA+ATLASGAL continuum. Green lines show direction of the outflow and in yellow are the continuum sources using Sextractor.

- Method was not efficient specially in most crowded regions to assign and detect outflows.
- We need alternative methods to detect outflows.

Figure 4: Section of G327 with ellipsoid in red being rotated to the position of the outflow in both the figures.

Results : Using 3D method

Figure 5: Kernel Density Estimation(KDE) for all the individual outflow lobes. Rugs in red are individual outflow lobes.

Figure 6: G327 ALMA+ATLASGAL continuum image with 2D sources(SExtractor) and possible 3D sources.

Figure 2: 3 Dimensional representation of SiO outflow. Red and blue colors represent red and blue shifted outflow. Pancake like structure in the middle is hot core and the region between red and blue shifted outflow is around systemic velocity.

- We needed to disentangle the outflows in order to get a complete picture of all the outflows.
- A 3D conversion of ALMA data was one of the solutions we found.
- We could detect around 43 outflows which is twice the number which we got using 2D analysis.
- We divided the G327 full region into subregions for better analysis.
- The outflow direction and relation can be concluded using skeleton structure of the subregions.

Figure 3: Subregion of G327 on the right showing skeletal structure of outflow.

Figure 7: Plot of source mass from Sextractor vs Outflow mass form 3D method with linear fit.

Position Angle : Monte Carlo Simulation

- Kernel Density Estimation in Fig 5 shows masses of individual outflows in the range '0.4-17.7' solar mass.
- It was found in Fig6 that 2D Sextractor sources do not always overlap with possible 3D sources implies there could be more sources driving the outflow.
- A plot of source mass to the outflow mass(Fig 7) shows outflow mass not very high which could imply that our sources are in early stages of stellar evolution.

Outflow Detection in 3D : Method

- We divided the G327 into subregions. We can see on such a subregion in Fig4.
- We found that individual outflows in 3D had complex geometry with branched outflows and multiple outflows.
- In order to calculate the outflow parameters we developed method using rotating ellipsoids.
- The ellipsoid was rotated using 2 angles in the direction of outflow and ellipsoid parameters were adjusted to fit the outflow lobe.
- The flux was calculated by using ellipsoid as mask which gave us outflow parameters

- This can suggest that angular momentum of protostellar accretion disk is correlated with host filament.

Figure 9: (a) CDF of the simulated gamma3D. (b) CDF of gamma2D based on randomly generated gamma3D.

Link for 3D model and Virtual Reality : https://sketchfab.com/3d-models/2g327-sio-colored2-b510a2f11b1447fa8908afb01f79ef19

Searching Pulsars Using Neural Networks Lars Künkel¹, Joris P. W. Verbiest^{1,2} & Rajat M. Thomas³

¹Universität Bielefeld, ²MPIfR Bonn, ³Department of Psychiatry, Amsterdam UMC, University of Amsterdam

lars.kuenkel@uni-bielefeld.de

therlands Institute for Radio Astronomy

Metadata and User-Provided Data in the LOFAR Long Term Archive

Jörn Künsemöller¹, H.A. Holties² and G.A. Renting²

¹Bielefeld University, Bielefeld, Germany; ²ASTRON, Dwingeloo, Netherlands

PyParadise: A simultaneous pipeline of stellar and gas kinematics

Man I Lam¹, Bernd Husemann², Omar S Choudhury^{1,} Anika Beer¹ and C. Jakob Walcher¹

¹Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany ²European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany

¹Universitäts-Sternwarte, Ludwig-Maximilians-Universität, München, Germany

DATA PREPARATION

• Used data from the K2 mission.

LUDWIG-

MÜNCHEN

MAXIMILIANS UNIVERSITÄT

- Removed all known sources from it
- Flattened the lightcurves and removed 3σ outliers
- Randomly injected transits
- Used the library 'TSFresh' to extract time series features from each lightcurve.
- After pre-processing, those features served as input to the model.
- Training set: 4500, Validation set: 1500

ANALYSIS

- Trained an XGBoost model, it was able to predict with an accuracy of 85%.
- Detecting a planet with a precision of 0.78
- Large number of false negatives because transits were randomly injected:
 - where signal-noise ratio is very low as planet injection was random.
 - where inclination angle is very low in some cases
 - Next step: Higher quality data
- These methods are efficient as well as robust, can be easily extended to classify single vs multi-planet transit signals without removing any detected transit signals

Exoplanet detection using Machine Learning A. Malik¹

Predicted class

"I think you should be more explicit here in step two."

Ξ

THEN A MIRACLE OCCURS

Entering NeuLAND: Analysis workflow preservation for a fair FAIR

Jan Mayer, Andreas Zilges University of Cologne, Institute for Nuclear Physics jan.mayer@ikp.uni-koeln.de

Data Infrastructure at the University of Cologne's Institute for Nuclear Physics

Martin Müller, Jan Mayer and Andreas Zilges University of Cologne, Institute for Nuclear Physics

Ghost from the past

Planetary engulfment as a possible explanation for observed high stellar rotation in metal poor main sequence stars

High-rotating main sequence stars from the Kepler mission.

Solution:

Spin-up due to tidal interaction with a high-mass, close-in planet.

Rotation velocity: 26 km/s Gyrochronology age: ~4 Gyr Age-Metallicity relationship: > 8 Gyr

Our model presents a solution to this paradox

References:

Angus et al. (2019) Bensby et al. (2014) Bouvier et al. (1997) Carone et al. (2007) Privitera et al. (2016) McQuillan et al. (2014) Hubert et al. (2014)

<u>A.Oetjens</u> and M. Bergemann and L. Carone Max-Planck-Institute for Astronomy, Heidelberg Ruprecht-Karls University Heidelberg

Towards reliable photo-z with SOM

<u>O. Razim¹</u> and G. Longo¹ ¹Department of Physics, Strada Vicinale Cupa Cintia, 21, 80126, University Federico II, Napoli, Italy SURA LINE

This project has received financial support from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN network.

Goal: ensure reliability of ML photo-z for the catalog with non-homogeneous spectr-z sample

Data: COSMOS2015 catalog. 5.10⁵ galaxies, >30 photometric bands, 0<spectr_z<9

Methods: MLPQNA photo-z algorithm + SOM

Main idea: Use SOM to detect spectroscopic and photometric outliers for which we don't have enough knowledge base

Results: selection of subsample of catalog with $\sigma(\Delta z)$ up to 2 times better than for the whole catalog and % of outliers up to 5 times lower

Further plans: investigation of the detected outliers; experiments with other outlier detection approaches

Scatter plots for independent DEIMOS subset

Multi-Cloud Burst

for MMA

The Largest Cloud Simulation in History

THE LARGEST CLOUD SIMULATION IN HISTORY

50k NVIDIA GPUs in the Cloud

350 PF OF SIMULATION FOR 2 HOURS

350 Petaflops for 2 hours

AWS, MICROSOFT AZURE, GOOGLE CLOUD PLATFORM

Distributed across US, Europe & Asia

On Nov 16 2019 we bought all GPU capacity that was for sale in Amazon Web Services, Microsoft Azure, and Google Cloud Platform worldwide

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Machine Learning and Big Data in Cherenkov Astronomy

- Challenge: Huge amount of data
- Atmosphere is part of the detector
 - Simulate different sets of parameter: Zenith distance, ambient light, atmosphere, clouds, calima
 - Challenge: Computing intensive
- Data analysis
 - Classification and regression problems: Particle type, shower origin, energy
 - Challenge: Mismatch between real and simulated events
- Multi-wavelength context
 - Machine learning to predict flares
 - Challenge: Simulations describing real light curves

hadronic

particle

gamma

particle

The PAHN-PaN Consortium

→ see poster #16

Particle, Astroparticle, Hadron & Nuclear Physics accelerate the NFDI

For the PAHN-PaN Consortium: Kilian Schwarz (GSI)

Bad Honnef, January 14 2020 Heraeus Seminar

Particle, astroparticle, and hadron & nuclear physics

• Decade-long experience in operating self-developed global big data management infrastructure (WLCG, the world's largest grid).

PAHN-PaN goals

 Innovative, industry-standard solutions for FAIR Exabyte data management and scientific services.

Synergies, solutions and services (see Cross Cutting Topics)

Knowlegde and technology transfer to/from entire NFDI..

- Task area 1: Developing workflows and tools for data management
- Task area 2: FAIR data lifecycle concepts and open data
- Task area 3: Data analysis procedures and services
- Task area 4:Real-time data analysis
and selection

schungsgemeinschaft

Improving the Milky Way model with Gaia

Task: Quickly simulate spatial distribution, kinematics and photometry of 10⁶ local stars

<u>Solution</u>: Wise data selection (complete samples), simplifying assumptions (AMR fixed for a single MCMC run), appropriate bin sizes (10⁴ bins to simulate), 10 parameters to fit:

$$\boldsymbol{\theta} = \{ \Sigma_d, \Sigma_t, \Sigma_{dh}, \sigma_e, \alpha_{\text{AVR}}, \sigma_t, \alpha_{\text{SFR}}, \beta_{\text{SFR}}, \tau_p, \Sigma_p \}$$

Preliminary results:

Hard to reproduce all observed data features within the assumed framework (wrong IMF? Model reached its predictive limit?) More in Sysoliatina and Just, in prep.

Workshop "The Science Cloud"

Kseniia Sysoliatina, ARI

From 2D to 3D to Graphs: Representing **Detector Geometries in Neural Networks.**

A. Trettin for the IceCube Collaboration

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

what a CNN expects... what we have to handle: VS. square convolution kernel complete mess hexagonal kernel?

...let the network learn geometry!

grid defect

Classification of High-resolution Solar Hα Spectra

3D data → Science in every pixel

t-SNE → Appropriate tool to classify spectra

Back mapping

M. Verma, G. Matijevič, C. Denker, A. Diercke, C. Kuckein, E. Dineva, H. Balthasar, I. Kontogiannis, and P. S. Pal

NuRadioReco and NuRadioMC

A Software Framework for the Radio Detector Community

- Radio signals from neutrinos in ice
- First discovery-scale detector to be built this year
- Need for simulation and reconstruction framework
- Detector layout likely to change
- Radio already used for cosmic rays

Our Goal:

Build a general radio-detector framework

Prototypes for the Next Generation of Computing Backends in Radio-Astronomy

T. Winchen, Max Planck Institue for Radioastronomy

Different Telescopes – One Modular Backend Software Design

Backend Design Summary

Adaptability:

Rapid adaption to individual observations and new/exotic science cases, e.g. real time transients with machine learning, detection of extreme energy particles, ...

+ Commensality:

Simultaneous processing for multiple disciplines and also offline data processing

+ Simplification:

Minimize in-house solutions, maximize reuse of components and prefer COTS computing hardware.

+ Standardization:

Use established open source software and industry operation standards

Maximize science / € Reduce development time (=money)

BoostNumpy: Big Data Processing in C++ with Python convenience

github.com/martwo/BoostNumpy

Question

 How to process big data fast and in a convenient way?

Answer

- Processing big data stored in numpy arrays using C++ functions from within a Python script
- Benefit from both worlds: speed & usability
- No data copying required

Martin Wolf, ECP, TIT 5F8 1259 Neutrons

- Automatic Parallelization on multi-CPU computers possible
- Very easy connection of C++ & Python by the developer via boost & MPL
 It's a one-liner!

Small Problems with Big Data in Astronomy

Oleksandra Razim¹, Kseniia Sysoliatina²

¹Department of Physics, Strada Vicinale Cupa Cintia, 21, 80126, University Federico II, Napoli, Italy, ² Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany

•

• • •

.

• • •