
Anatoli Fedynitch

@ ICRR

February 3rd 2020

Proposal for a parallel scheduling algorithm

Page 2

Recap from last talk
• Scaling up CORSIKA simulations and use modern methods (heterogenic compute: multicore + accelerator)

means that parallelization has to be managed

• This means that there is “no main loop” 

• Instead, there has to be a scheduler.

• More on this: next time

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

Page 3

Shower "tree"

• Classical way of processing (loop):

• Follow the first branch of each

branching (interaction)

• Terminate when “observation

condition”/serialization happens

• Use “intermediate stack” to overcome

the absence of recursion in

FORTRAN and save memory

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

Page 4

CPU time requirements

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

Page 5

Efficient distribution of work

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

• How to occupy all available

recourses?

• Group tasks into batches of

tasks (=jobs)

• With controlled runtime

• For the correct arch

(GPU/CPU)

Page 6

Scheduling algorithm

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

Page 7

Scheduler implementation

• Use MPI for communication locally or via ethernet or strong interconnect. It is made for that.

• Accumulate first stack on the master in sequential mode

• Master keeps accumulating by receiving MPI messages from terminating workers.

• Monitor wall time and speed on each worker, migrate if necessary, log debug info locally on scratch space,

transfer logs if crash is encountered to reconstruct the workers condition. Heuristics really crucial to set this

up.

• Additional storage workers may be required to reduce the number of simultaneous data files. Or concurrent

writing to few HDF files (but feel uncomfortable when thinking about it)

• Workers should be able to migrate their work: if one worker is too slow, terminate execution push the

unfinished particles back to stack, and notify the master to reduce the number of workers on this machine.

• Similar approach worked great for independent CORSIKA6 runs. Target run-time 8h per-job was achieved

within <10-15 minutes

| CORSIKA8 call | 2020/02/3 | Anatoli Fedynitch

