Scalar Dark Matter in the B-L Model

Based on 1509.04036 with Werner Rodejohann

Carlos E. Yaguna

Max-Planck-Institute for Nuclear Physics Heidelberg, Germany 2015

Understanding the stability of the dark matter particle is very challenging

Heavy particles tend to decay really fast

 $au_{top} \sim 10^{-25} s \ au_{DM} \gtrsim 10^{27} s$

Discrete symmetries are typically imposed

 Z_2 , R-parity, KK-parity

But they are expected to be broken at M_{Planck}

 $Discrete \rightarrow Gauge$

The $U(1)_{B-L}$ extension of the SM is particularly appealing

It is remarkably simple

 $egin{aligned} N_R, S_{BL} \ \langle S_{BL}
angle = v_{BL}
eq 0 \end{aligned}$

It realizes the seesaw mechanism

It has interesting collider signatures

 $M_{N_R} \propto v_{BL}$

$$rac{M_{Z_{BL}}}{g_{BL}}\gtrsim 7~{
m TeV}$$

We will add another scalar field charged under B - L to account for the dark matter

Its B-L charge ensures dark matter stability

 $n_{DM}
eq 2n, n \in \mathbb{Z}, n \leq 4$ Multi-component dm is allowed

 v_{BL} cannot be much above the TeV scale

$$M_{\phi_{DM}}^2 = \lambda_{DM} v_{BL}^2 + \dots$$

 ϕ_{DM} has gauge and scalar interactions

 $egin{aligned} V &= \lambda_H (\phi^\dagger_{DM} \phi_{DM}) (H^\dagger H) \ &+ \lambda_{DM} (\phi^\dagger_{DM} \phi_{DM}) (S^\dagger_{BL} S_{BL}) + \dots \end{aligned}$

The B-L gauge interaction can account for the relic density only close to the resonance

This possibility will be probed by direct detection experiments in the near future

Dark Matter Mass [GeV]

And most of the points with $n_{DM} < 1$

Scalar interactions can give rise to dark matter annihilations into $N_R N_R$ and $S_{BL} S_{BL}$

Scalar interactions allow for heavier dark matter particles

The B-L model provides a compelling scenario to explain ν masses and dark matter

