

UNIVERSITY OF AMSTERDAM

Francesca Calore

The case for a GeV excess in Fermi-LAT data from the Galactic centre

HAP Workshop Dark Matter Karlsruhe, 23.09.2015

Mainly based on: arXiv:1409.0042, 1411.4647, 1506.0511, 1509.02164

The GeV gamma-ray sky

The GeV gamma-ray sky

Francesca Calore

University of Amsterdam

An excess in gamma rays

The Galactic centre GeV excess

Excess emission **above the astrophysical foregrounds and backgrounds**, i.e. Galactic diffuse emission (standard cosmic-ray propagation), point sources and Fermi bubbles.

The (standard) analysis set-up

Counts, 2.12 - $3.32~{\rm GeV}$

14.1

Data selection and standard preparation (P7REP)

284 weeks; 300 MeV-500 GeV

ROI: $2^{\circ} \le |b| \le 20^{\circ} \& |l| \le 20^{\circ}$

Point sources (2FGL) weighted adaptive mask.

University of Amsterdam

The (spatial) template-fitting method (maximum likelihood)

The (standard) analysis set-up

Counts, 2.12 - $3.32~{\rm GeV}$

14.1

Data selection and standard preparation (P7REP)

284 weeks; 300 MeV-500 GeV

ROI: $2^{\circ} \le |b| \le 20^{\circ} \& |l| \le 20^{\circ}$

Point sources (2FGL) weighted adaptive mask.

The (spatial) template-fitting method (maximum likelihood)

$$\begin{array}{ll} \text{Model counts} & \text{Data counts} \\ \mu_{i,j} = \sum_k \theta_{i,k} \mu_{i,j}^{(k)} & k_{i,j} \\ -2\ln \mathcal{L} = 2\sum_{i,j} w_{i,j} (\mu_{i,j} - k_{i,j} \ln \mu_{i,j}) + \chi_{\text{ext}}^2 \longrightarrow \theta_{i,k} \end{array}$$

Calore+ 2014

0

The excess spectrum

- ✓ Theoretical systematics from the variation of Galactic diffuse models (standard assumptions).
- ✓ **Empirical systematics** from a scan along the Galactic disc (only diagonal part of covariance matrix shown).

The excess morphology

The excess morphology

Francesca Calore

University of Amsterdam

The excess morphology

The Fermi-LAT analysis

- 15x15 region but tuning of Galactic diffuse emission outside
- Wavelet transform applied to subtract dim point sources
- Residuals (data-model) can improve (to some extent and at some energies) when introducing a spherical template

S. Murgia, Fermi Symposium 2014

+ Gaggero et al. 2015, de Boer et al 2015

Francesca Calore

University of Amsterdam

What do we know about the excess?

- ✓ The existence of GeV excess above the standard astrophysical background is well-established.
- ✓ An extended source in the inner part of Galaxy, consistent with a spherically symmetric density profile, does exist.
- ✓ The excess extends up to at least 10 deg in latitude and it is compatible with a unique spherically symmetric component.
- ✓ However, owing to the background model systematics, there is large freedom for models fitting the excess.
- ✓ Spectrum consistent with different models because of background model systematics.

volume emissivity dN/dV/dt/dE

volume emissivity dN/dV/dt/dE

12

Constraints:

(a) Spectrum & Morphology of the excess? (b) Emission in other wavelengths?

Diffuse processes

Additional population of **leptonic cosmic rays** required at the Galactic centre

a. Steady-state source term (from e.g. SN population)

Gaggero+15

b. Time-dependent source term (from e.g. outburst event)

Dark matter annihilation

Spectrum?

Morphology?

Correlated errors can be reduced to variations of the slope and normalisation of the main galactic diffuse emission components.

Leptonic outbursts at the GC

- Injection of high-energy CR in the past, at the GC (from the central black hole or starburst activity)
- Time dependent • phenomenon (not steady state solution)
- Emission from inverse Compton and bremsstrahlung (no hadronic emission - gas correlated)

One outburst:

p-value=0.14

p-value=0.44

University of Amsterdam

Hard injection indices (<2), at least two bursts & high re-acceleration

Unresolved point sources

Young Pulsars and Millisecond Pulsars

Spectrum?

Hooper+ 2013; Yuan & Zhang 2014; Hooper+ 2013; Calore+ 2014; Cholis+ 2014; Petrovic+2014; Yuang+2014; and many others

Wang+ 2005; Abazajian 2011;

Gordon & Macias 2013;

Morphology?

• **Disc-like** population => at most 10% of the excess emission.

Calore+ 2014

• **Bulge** population => viable explanation.

Petrovic+2014, Yuang+2014 O'Leary+2015

 Strong support from wavelet decomposition of the gamma-ray sky and one-point non-Poissonian photon counts statistics.

Lee+2015, Bartels+2015

Unresolved point sources

- Two independent techniques reach similar conclusions: significant contribution from dim point sources.
- phenomenological description of sources (luminosity function and a NFW-like spatial distribution)

A challenge for radio searches

Fermi-LAT and ATNF catalog MSPs spatial distribution projected on the galactic plane

A challenge for radio searches

Fermi-LAT and ATNF catalog MSPs spatial distribution projected on the galactic plane

A challenge for radio searches

10 hours observation time with SKA, 2.38 GHz.

Calore, Di Mauro, Donato, Massaro, Weniger. In preparation

Dark matter spatial profile?

Pure DM simulations **DM only**

Aquarius 2008

Hydrodynamic simulations **DM+baryons**

EAGLE 2015

Question: What is the simulated dark matter density profile for Milky Way-like galaxies in the EAGLE simulations?

arXiv: 1509.02164, 1509.02166

$5 \times 10^{11} < M_{200}/M_{\odot} < 1 \times 10^{14}$

- (i) The simulated rotation curve fits well the observed MW kinematical data in ref. [5].
 We explain the method followed to derive the rotation curves from the simulation, the data used in the analysis and the goodness of fit definition in section 3.1.
- (ii) The total stellar mass of the simulated galaxies is within the 3σ MW range derived from observations, $4.5 \times 10^{10} < M_*/M_{\odot} < 8.3 \times 10^{10}$ [50]: 335, 12, and 2 galaxies satisfy this constraint in the EAGLE IR, EAGLE HR and APOSTLE IR respectively.²
- (iii) The galaxies contain a substantial stellar disc component. See section 3.2.

$5 \times 10^{11} < M_{200}/M_{\odot} < 1 \times 10^{14}$

- (i) The simulated rotation curve fits well the observed MW kinematical data in ref. [5].
 We explain the method followed to derive the rotation curves from the simulation, the data used in the analysis and the goodness of fit definition in section 3.1.
- (ii) The total stellar mass of the simulated galaxies is within the 3σ MW range derived from observations, $4.5 \times 10^{10} < M_*/M_{\odot} < 8.3 \times 10^{10}$ [50]: 335, 12, and 2 galaxies satisfy this constraint in the EAGLE IR, EAGLE HR and APOSTLE IR respectively.²
- (iii) The galaxies contain a substantial stellar disc component. See section 3.2.

arXiv: 1509.02164

 $5 \times 10^{11} < M_{200}/M_{\odot} < 1 \times 10^{14}$

- (i) The simulated rotation curve fits well the observed MW kinematical data in ref. [5].
 We explain the method followed to derive the rotation curves from the simulation, the data used in the analysis and the goodness of fit definition in section 3.1.
- (ii) The total stellar mass of the simulated galaxies is within the 3σ MW range derived from observations, $4.5 \times 10^{10} < M_*/M_{\odot} < 8.3 \times 10^{10}$ [50]: 335, 12, and 2 galaxies satisfy this constraint in the EAGLE IR, EAGLE HR and APOSTLE IR respectively.²
- (iii) The galaxies contain a substantial stellar disc component. See section 3.2.

$$\rho_{\odot}(R_{\odot} = 8 \,\mathrm{kpc}) = 0.44 - 0.59 \,\mathrm{GeV/cm^3}$$

arXiv: 1509.02164

Francesca Calore

University of Amsterdam

 $5 \times 10^{11} < M_{200}/M_{\odot} < 1 \times 10^{14}$

- (i) The simulated rotation curve fits well the observed MW kinematical data in ref. [5].
 We explain the method followed to derive the rotation curves from the simulation, the data used in the analysis and the goodness of fit definition in section 3.1.
- (ii) The total stellar mass of the simulated galaxies is within the 3σ MW range derived from observations, $4.5 \times 10^{10} < M_*/M_{\odot} < 8.3 \times 10^{10}$ [50]: 335, 12, and 2 galaxies satisfy this constraint in the EAGLE IR, EAGLE HR and APOSTLE IR respectively.²
- (iii) The galaxies contain a substantial stellar disc component. See section 3.2.

21

arXiv: 1509.02164

Approach: Power-law extrapolation with maximal asymptotic slope at Power radius => Very conservative choice!

EAGLE HR (2 haloes): $0.94 < \gamma_{max} < 0.98$ at $R_{P03} = 1.8$ kpc

APOSTLE IR (2 haloes): $0.50 < \gamma_{\text{max}} < 0.62$ at $R_{\text{P03}} = 1.8$ kpc.

arXiv: 1509.02164

Fit to the GeV excess

arXiv: 1509.02164

÷

 10^{2}

 10^{1}

E [GeV]

Francesca Calore

Challenges & Outlook

- ✓ Improved understanding of the **Galactic diffuse emission**
 - more realistic description of Galactic centre (CR sources)
 - high resolution gas maps and interstellar radiation field model
- ✓ Dark matter?
 - independent confirmation... dwarfs? (no tension so far!)
 - improved understanding of halos in hydrodynamic simulations

✓ Outburst events?

- dependence of the spectrum in the region considered
- possible breaks in the spectrum
- radio counterparts?

✓ Unresolved sources?

- energy dependence in template fitting
- spectral fit pf sources
- multi-wavelength

Challenges & Outlook

- ✓ Improved understanding of the **Galactic diffuse emission**
 - more realistic description of Galactic centre (CR sources)
 - high resolution gas maps and interstellar radiation field model
- ✓ Dark matter?
 - independent confirmation... dwarfs? (no tension so far!)
 - improved understanding of halos in hydrodynamic simulations
- ✓ Outburst events?
 - dependence of the spectrum in the region considered
 - possible breaks in the spectrum
 - radio counterparts?
- ✓ Unresolved sources?
 - energy dependence in template fitting
 - spectral fit pf sources
 - multi-wavelength

Still a lot of work to do to possibly unveil dark matter in the centre of the Milky Way! Backup

60 Galactic diffuse home-brew models

Building models* for the diffuse galactic emission, by varying the following parameters:

- geometry of the diffusion zone: $4 \le z_D \le 10$ kpc and $r_D = 20$ or 30 kpc;
- source distributions: SNR, pulsars, OB stars;
- diffusion coefficient at 4 GV: $D_0 = 2 60 \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$;
- Alfvén speed: $v_{\rm A} = 0 100 \, {\rm km \, s^{-1}};$
- gradient of convection velocity: $dv/dz = 0 500 \text{ km s}^{-1} \text{ kpc}^{-1}$;
- ISRF model factors (for optical and infrared emission): 0.5 1.5;
- B-field parameters: $5 \le r_c \le 10$ kpc, $1 \le z_c \le 2$ kpc, and $5.8 \le B(r = 0, z = 0) \le 117$ μ G.

*Models from Ackermann+ 2012 (128 models) or from new GALPROP runs.

Francesca Calore

University of Amsterdam

Empirical model systematics

University of Amsterdam

The covariance matrix

Flux absorbed by excess template in
 22 test regions along the Galactic disk.

Standard deviation is a first estimate for how inaccuracies in the foreground modelling affect the excess template.

Observed variations along the disk are correlated in energy.

ightarrow Define the **covariance matrix:**

$$\Sigma_{ij,\,\mathrm{mod}} = \left\langle \frac{dN}{dE_i} \frac{dN}{dE_j} \right\rangle - \left\langle \frac{dN}{dE_i} \right\rangle \left\langle \frac{dN}{dE_j} \right\rangle$$

i, j = 1, ..., 24; averaged over 22 test regions

Principal component analysis

Principal component analysis

Francesca Calore

University of Amsterdam

Consistency with dSph: present and future

University of Amsterdam

Consistency with dSph: present and future

Francesca Calore

University of Amsterdam

EAGLE simulations

Name	L (Mpc)	N	$m_{ m g}~({ m M}_{\odot})$	$m_{ m dm}~({ m M}_{\odot})$	ϵ (pc)
EAGLE HR	25	2×752^3	$2.26 imes 10^5$	$1.21 imes 10^6$	350
EAGLE IR	100	2×1504^3	1.81×10^6	$9.70 imes 10^6$	700
APOSTLE IR	_	—	$1.3 imes 10^5$	$5.9 imes10^5$	308
APOSTLE HR (I)	_	—	$1.0 imes 10^4$	$5.0 imes10^4$	134
APOSTLE HR (II)	—	—	$5.0 imes 10^3$	$2.5 imes10^4$	134

Table 1. Parameters of the simulations discussed in this paper. L is the comoving sidelength of the simulation cube, N the number of simulation particles prior to splitting, $m_{\rm g}$ the initial gas particle mass, $m_{\rm dm}$ the DM particle mass, and ϵ the Plummer-equivalent physical softening length. The resolution limit is usually taken to be $2.8 \times \epsilon$, i.e. 1.96, 0.98 and 0.87 kpc for EAGLE IR, EAGLE HR and APOSTLE IR, respectively.

Activity of the Galactic centre

Injection of high energetic cosmic rays at the Galactic centre during a burst-like event in the past.

Signs of the past activity of the GC:

- Formation of Fermi bubbles => large-scale outflows generated by (a) jet from MBH or (b) starburst events about 10 million years ago.
- X-ray reflection nebulae at the GC
 > Sgr A* activity about 300 yr ago.
- Galactic center Lobe (ROSAT data) => $E_{\rm kin} \sim 10^{55} {\rm erg}$ $\tau \sim 10^{6} {\rm yr}$
- OB stellar association: evidence 6 Myr ago + 2 clusters in the inner 50 pc formed 10 million years ago => hints for a global event with enhanced star formation rate.

Slide from G. Ponti

see for example discussion in Su+ 2010

University of Amsterdam