

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Current status of the CRESST experiment

HAP Dark Matter 2015

Holger Kluck (TU Wien & HEPHY) for the CRESST collaboration

22 September 2015

- CRESST: Basic principles
- Latest results from CRESST-II phase 2
- Outlook to CRESST-III

to cosmic

CRESST: background suppression

Underground @ LNGS, 3500mwe

 μ veto + shields against n's (45cm PE, inner n shield) and γ (20 cm Pb, 14cm Cu)

CRESST: target

 Searched signal: single nuclear recoil caused by elastic scattering of e.g. WIMPs.

- Target: CaWO₄ (200g 300g)
 → sensitive to low- and highmass dark matter particles
 - 2 signal channels:
 - Phonon signal
 - Light signal

CRESST: phonon signal

 CaWO₄ crystals @~10mK as calorimetric absorber: 1keV recoil ~ O(1µK)

CRESST: light signal

- CaWO₄ scintillates
- Silicon-on-sapphire as light absorber, equipped with 2nd TES.
- Light yield is particle specific
 - → particle ID

CRESST: event categories

CRESST-II phase 2 (2013-2015)

- 18 modules mounted (~5kg),17 are fully operationalEnd of run: August 2015
- 6 modules with active veto (3 designs)

carrier

CaWO₄ sticks beaker

- 11 conventional modules (improved)
 - Radiopure clamps
 - Radon prevention

CRESST-II phase 2 (2013-2015)

- 18 modules mounted (~5kg),17 are fully operationalEnd of run: August 2015
- 6 modules with active veto (3 designs)

2014 result: Module ,TUM40' 29 kg.d exposure [Eur. Phys. J. 74(2014)3184]

- 11 conventional modules (improved)
 - Radiopure clamps
 - Radon prevention

CRESST-II phase 2 (2013-2015)

- 18 modules mounted (~5kg),17 are fully operationalEnd of run: August 2015
- 6 modules with active veto (3 designs)

CaWO₄ sticks beaker carrier 11 conventional modules (improved) This talk: Module ,Lise' 52 kg.d exposure [arXiv:1509.01515]

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level: ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- Background level: ~7 counts / keV kg.day
- 300eV threshold
- 60eV resolution

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level: ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- Background level: ~7 counts / keV kg.day
- 300eV threshold
- 60eV resolution

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level:
 ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- Background level: ~7 counts / keV kg.day
- 300eV threshold
- 60eV resolution

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level: ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- → See talk by M. Willers for details about crystal production
 - 300eV threshold
 - 60eV resolution

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level:
 ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- Background level: ~7 counts / keV kg.day
- 300eV threshold
- 60eV resolution

Comparison TUM40 vs Lise

TUM40 (2014)

- Veto for recoil backgrounds
- Background level:
 ~3 counts / keV kg.day
- 600eV threshold
- 100eV resolution

- No veto for recoil backgrounds
- Background level: ~7 counts / keV kg.day
- 300eV threshold
- 60eV resolution

Comparison TUM40 vs Lise

Superior overall performance

Lowest trigger threshold

New data (52 kg.d)

Acceptance region

22 September 2015

 \rightarrow Use Yellin's optimum interval method to set an exclusion limit

Summary I

- TUM40 (2014) [Eur. Phys. J. 74(2014)3184]:
 →Improved background suppression
 →Improved radiopurity by in-house crystal growth
- Lise (2015) [arXiv:1509.01515]:
 → Detector of CRESST-II phase 2 with lowest trigger threshold (~300eV)
 - → Explored new parameter space for $m_{DM} \le 1 \text{ GeV/c}^2$

Outlook: CRESST-III

- Available crystal quality
- Smaller crystals
 250g → 24g
- →Trigger threshold ~100eV

Outlook: CRESST-III

• Available crystal quality

- →Trigger threshold ~100eV
- →Successfully tested

→Production ~15 modules underway

Outlook: CRESST-III

• Available crystal quality

- →Trigger threshold ~100eV
- →Successfully tested

→Production ~15 modules underway

→Start CRESST-III end of this year

Current status of the CRESST

Institute of High Energy Physics

Outlook: CRESST-III phase 2 10⁻³⁶ 10⁰ 10⁻³⁷ 10⁻¹ WIMP-nucleon cross section [pb] WIMP-nucleon cross section [cm² 10⁻²1 10 10⁻³⁹ 10⁻³ 1000 kg.d Phase 2: 100 modules x 2 yr 10⁻⁴⁰ 10⁻⁴ **Improved crystal 10**⁻⁴¹ 10⁻⁵ radiopurity by ~100 10⁻⁶ 10 10⁻⁴³ 10⁻⁷ 10⁻⁸) 10 10⁻⁹ 10 Coherent Neutrino Scattering on CaWO₄ 30¹⁰⁻⁴⁶ **10⁻¹⁰** 2 5 8 9 1 0 20 3 WIMP mass [GeV/c²] [arXiv:1503.08065]

Institute of High Energy Physics

22 September 2015

Summary II

Backup slides

Current status of the CRESST

Surface α-events

²¹⁰Po \rightarrow ²⁰⁶Pb (103keV) + α (5.3MeV)

Surface α -events

²¹⁰Po \rightarrow ²⁰⁶Pb (103keV) + α (5.3MeV)

CRESST-II phase 1

[Eur. Phys. J C 72(2012)1971]

Clamps do not scintillate!

TUM40: Pb recoil suppression

TUM40: Pb recoil suppression

TUM40: radiopurity

- CaWO₄ crystal production at TU Munich [Cryst. Eng. Comm. 015(2013)2301]
- Unprecedented radiopurity (factor 2-10 improvement) [JCAP 5(2014)18]

WIEN

TUM40: trigger efficiency

- Resolution agrees with γ lines: 107(3)eV
- Extremely low threshold: 603(2)eV

[arXiv:1509.01515]

Lise: signal fraction

Counts in Acceptance Region (1/pb) 10⁷ 10⁶ **10**⁵ **10**⁴ 10³ 10² ⊧ 10 – Total 1 Calcium -- Tungsten **10**⁻¹ - - Oxygen 10⁻² 0.5 2 3 6 7 8 910 20 30 1 4 5