

Alliance for Astroparticle Physics

Production of CaWO₄ Crystals for the CRESST Experiment & Development of Neganov-Luke Amplified Cryogenic Light Detectors

HAP Dark Matter 2015

Michael Willers TU München & Excellence Cluster Universe

22.09.2015

Production of CaWO₄ Crystals for the CRESST Experiment

CRESST III

- Already introduced by H. Kluck
- Focus on low-mass WIMPs

(see also: Probing low WIMP masses with the next generation of CRESST detectors, arXiv 1503.08065)

- → important factors: Performance (Threshold) & Radiopurity
- New, fully scintillating, detector modules (crystal mass ~ 25g)

CRESST III

- Already introduced by H. Kluck
- Focus on low-mass WIMPs

(see also: Probing low WIMP masses with the next generation of CRESST detectors, arXiv 1503.08065)

- → important factors: Performance (Threshold) & Radiopurity
- New, fully scintillating, detector modules (crystal mass ~ 25g)

- Before CRESST-II Phase 2: only commercial CaWO₄ crystals (Russia & Ukraine)
 - Difficult: influence on selection of raw materials
 - No influence on crystal growth parameters
- Since ~ 2011: in-house production of CaWO₄ crystals at TUM for CRESST & EURECA*
 - Full control over raw materials (screening & selection)
 - Full control of growth / post-growth treatment parameters!
- Dedicated Czochralski furnace for CaWO₄ crystals

* A. Erb and J.C. Lanfranchi, Growth of high-purity scintillating CaWO4 single crystals for the lowtemperature direct dark matter search experiments CRESST-II and EURECA, CrystEngComm, 2013

HAP Dark Matter 2015

- Steady development towards complete in-house production of CaWO₄ crystals
 - Production of raw powder: $CaCO_3 + WO_3 \rightarrow CaWO_4 + CO_2$
 - Crystal growth (Czochralski method) in Rh crucible (99%Ar / 1% O₂)
 - Post growth treatment (annealing) to improve optical quality (100% O₂)
 - Cutting & polishing of crystals
- Dedicated oven & powder grinding machine to produce CaWO₄ powder
- Dedicated annealing oven
- CRESST-II Phase 2 : 4 TUM-grown crystals
 CRESST-III : majority of crystals foreseen to be TUM-grown

 $CaCO_3 + WO_3$

• Steady developmen

- Production of rav
- Crystal growth ((
- Post growth treat
- Cutting & polishi
- Dedicated oven & p
- Dedicated annealing
- CRESST-II Phase 2

Cutting & Polishing

WO₄ crystals 🖌

% O₂) 00% O₂)

cowder

CRESST-III : majority of crystals foreseen to be TUM-grown

- Steady development towards complete in-house production of CaWO₄ crystals
 - Production of raw powder: $CaCO_3 + WO_3 \rightarrow CaWO_4 + CO_2$
 - Crystal growth (Czochralski method) in Rh crucible (99%Ar / 1% O₂)
 - Post growth treatment (annealing) to improve optical quality (100% O₂)
 - Cutting & polishing of crystals
- Dedicated oven & powder grinding machine to produce CaWO₄ powder
- Dedicated annealing oven
- CRESST-II Phase 2 : 4 TUM-grown crystals
 CRESST-III : majority of crystals foreseen to be TUM-grown

Improved Radiopurity: TUM40

Total α - Activities (1.5 - 7 MeV)

$e^{-/\gamma}$ Background events below 50 keV

TUM40: 3.07 ± 0.11 mBq/kg commercial crystals: 3 - 107 mBq/kg (Münster et al., JCAP05(2014)018) TUM40: 3.51 / (keV kg day) commercial crystals: 6 - 30 / (keV kg day) (Strauss et al., JCAP06(2015)030)

→ Significant improvement in radiopurity!

For TUM40 results see: EPJC (2015) 75:352

Further Improvement of Radiopurity

recrystallisation of CaWO₄ crystals

- growth of multiple crystals
 (segregation of impurities during crystal growth)
- cleaning of crucible / removal of remaining melt
- recrystallisation of produced crystals
- → growth of crystal with improved radiopurity
- chemical cleaning of raw materials
 - CaWO₄ powder cannot be cleaned (due to chemical / physical properties)
 - \rightarrow cleaning of raw materials (currently CaCO₃)
 - Preliminary results: U extraction factor ~ 5000, Th extraction factor ~ 1000 (detailed ICP-MS / HPGe measurements ongoing, check that no new impurities are introduced!)
- → growth of crystal with improved radiopurity
- both methods currently under investigation (PhD thesis A. Münster (in preparation))

 → operation of crystal with further improved radiopurity planned for CRESST III

Further activities:

- Study influence of crystal growth / annealing on optical properties of CaWO₄ crystals (PhD thesis, A. Münster, in preparation)
- Investigate radiopurity of CaWO₄ via scintillation spectroscopy (PhD thesis, M. v. Sivers, TUM 2014 (now University of Bern))
- Investigate scintillation mechanisms in CaWO₄

(PhD thesis S. Roth, TUM 2014 (now Queens University, Kingston), in collaboration with A. Ulrich, TUM E12)

Investigate scintillator non-proportionality

(Master thesis C. Bruhn, TUM 2015)

Further activities:

- Study influence of crystal growth / annealing on optical properties of CaWO₄ crystals (PhD thesis, A. Münster, in preparation)
- Investigate radiopurity of CaWO₄ via scintillation spectroscopy (PhD thesis, M. v. Sivers, TUM 2014 (now University of Bern))
- Investigate scintillation mechanisms in CaWO₄

(PhD thesis S. Roth, TUM 2014 (now Queens University, Kingston), in collaboration with A. Ulrich, TUM E12)

Investigate scintillator non-proportionality

(Master thesis C. Bruhn, TUM 2015)

Summary:

- Complete in-house production of CaWO4 crystals for CRESST / EURECA ✔
- Significant improvement in radiopurity ✓ (+ further potential for improvement!)
- Ongoing activities to study scintillation mechanism & optical properties

Development of Neganov-Luke Amplified Cryogenic Light Detectors

→ Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM ($e^{-\gamma}$ / nuclear-recoil separation) and $0\nu\beta\beta$ (e^{-}/α separation) experiments!

→ Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM ($e^{-\gamma}$ / nuclear-recoil separation) and $0\nu\beta\beta$ ($e^{-\gamma}$ / α separation) experiments!

→ Drifting of charge carriers in Electric field leads to increased phonon signal

$$G_{th} = 1 + rac{eV_{NL}}{E_{ph}/\eta}$$

Ideally: no increase in el. noise \rightarrow improvement in S/N ratio \rightarrow improved sensitivity

→ Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM ($e^{-\gamma}$ / nuclear-recoil separation) and $0\nu\beta\beta$ ($e^{-\gamma}$ / α separation) experiments!

→ Drifting of charge carriers in Electric field leads to increased phonon signal

$$G_{\,th} = 1 + rac{eV_{NL}}{E_{\,ph}/\eta}$$

Ideally: no increase in el. noise \rightarrow improvement in S/N ratio \rightarrow improved sensitivity

→ Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM ($e^{-\gamma}$ / nuclear-recoil separation) and $0\nu\beta\beta$ ($e^{-\gamma}$ / α separation) experiments!

• <u>A typical silicon-based NL light detector:</u>

light absorber: 20 x 20 x 0.5 mm³, p-type, ρ > 10kΩcm *aluminum electrodes* ~ 20 mm x 0.2 mm x 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

• <u>A typical silicon-based NL light detector:</u>

light absorber: 20 x 20 x 0.5 mm³, p-type, ρ > 10kΩcm *aluminum electrodes* ~ 20 mm x 0.2 mm x 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

- Typical NL voltages: ~ 70 150 V
- NL amplification: ~ 10 @ 70V (~ 25 expected)
- additionally: reduction of amplification with time solved now \checkmark
- Currently under Investigation: Why can we apply "only" up to 150V? Why is the amplification lower than expected?

• <u>A typical silicon-based NL light detector:</u>

light absorber: 20 x 20 x 0.5 mm³, p-type, ρ > 10kΩcm *aluminum electrodes* ~ 20 mm x 0.2 mm x 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

- Typical NL voltages: ~70 150 V
- NL amplification: ~ 10 @ 70V (~ 25 expected)
- additionally: reduction of amplification with time solved now ✓
- Currently under Investigation: Why can we apply "only" up to 150V?
 Why is the amplification lower than expected?

Neganov-Luke: Effective Gain

$$G_{eff} = 1 + rac{eV_{eff}(t)}{E_{ph}/\eta} \cdot rac{l_{drift}}{d}$$

Stark et. al, NIM A 545 (2005)

Neganov-Luke: Effective Gain

$$G_{eff} = 1 + rac{eV_{eff}(t)}{E_{ph}/\eta} \cdot rac{l_{drift}}{d}$$

Stark et. al, NIM A 545 (2005)

<u>Reduced drift length (Idrift< d):</u>

• trapping of charge carriers (\rightarrow G_{eff} < G_{th})

Neganov-Luke: Effective Gain

$$G_{eff} = 1 + rac{eV_{eff}(t)}{E_{ph}/\eta} \cdot rac{l_{drift}}{d}$$

Stark et. al, NIM A 545 (2005)

Reduced drift length (Idrift < d):

• trapping of charge carriers (\rightarrow G_{eff} < G_{th})

Reduction of signal amplitude:

- Accumulation of drifted charge carriers close to aluminum electrodes
 → Reduction of V_{eff} (& G_{eff}) over time
- Annealing of substrates (PhD S. Roth TUM 2014) \rightarrow Significant improvement

Isaila et al. Physics Letters B 716 (2012)

Neganov-Luke Light Detectors - Planar Electrode Geometry

- Planar electrode geometry (shallow (implanted) ohmic contacts)
 V_{NL} applied between top/bottom face of light detector
- → Drift of e/h pairs through bulk / *no drift across surface* of substrate!
- Very high electric fields possible (~ 6.5 kV/cm)
- First measurements promising: no increase in noise / linear amplification / no charge trapping
- Detailed measurements in preparation!

In collaboration with X. Defay (Excellence Cluster Universe & TUM) "Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect", arXiv 1509.06266

Application: Background Suppression in TeO₂ Crystals

- ¹³⁰Te (TeO₂) promising $0\nu\beta\beta$ candidate
- α-events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599)
 plan to employ active background suppression techniques
 → detection of Cherenkov photons for e⁻ / α discrimination (expected signal at Q_{ββ}(¹³⁰Te): ~ 100eV)

Application: Background Suppression in TeO₂ Crystals

- ¹³⁰Te (TeO₂) promising $0\nu\beta\beta$ candidate
- α-events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599) plan to employ active background suppression techniques \rightarrow detection of Cherenkov photons for e⁻ / α discrimination (expected signal at Q_{ββ}(¹³⁰Te): ~ 100eV)

@TUM: first measurements showing feasibility of Cherenkov detection from TeO₂ using NL light detectors (2015 JINST 10 P03003)

Application: Background Suppression in TeO₂ Crystals

- ¹³⁰Te (TeO₂) promising $0\nu\beta\beta$ candidate
- α-events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599) plan to employ active background suppression techniques \rightarrow detection of Cherenkov photons for e⁻ / α discrimination (expected signal at Q_{ββ}(¹³⁰Te): ~ 100eV)

@TUM: first measurements showing feasibility of Cherenkov detection from TeO₂ using NL light detectors (2015 JINST 10 P03003)

Thank you for your attention!