

Alliance for Astroparticle Physics

Production of CaWO4 Crystals for the CRESST Experiment & Development of Neganov-Luke Amplified Cryogenic Light Detectors

HAP Dark Matter 2015

Michael Willers *TU München & Excellence Cluster Universe*

22.09.2015

Production of CaWO4 Crystals for the CRESST Experiment

CRESST III

- Already introduced by H. Kluck
- Focus on low-mass WIMPs

(see also: Probing low WIMP masses with the next generation of CRESST detectors, arXiv 1503.08065)

- → important factors: Performance (Threshold) & **Radiopurity**
- New, fully scintillating, detector modules (crystal mass \sim 25g)

CRESST III

- Already introduced by H. Kluck
- Focus on low-mass WIMPs

(see also: Probing low WIMP masses with the next generation of CRESST detectors, arXiv 1503.08065)

- → important factors: Performance (Threshold) & **Radiopurity**
- New, fully scintillating, detector modules (crystal mass \sim 25g)

- Before CRESST-II Phase 2: only commercial CaWO₄ crystals (Russia & Ukraine)
	- Difficult: influence on selection of raw materials
	- No influence on crystal growth parameters
- Since ~ 2011: in-house production of CaWO₄ crystals at TUM for *CRESST & EURECA*^{*}
	- *Full control over raw materials (screening & selection)*
	- *Full control of growth / post-growth treatment parameters!*
- Dedicated Czochralski furnace for CaWO₄ crystals

* A. Erb and J.C. Lanfranchi, Growth of high-purity scintillating CaWO4 single crystals for the lowtemperature direct dark matter search experiments CRESST-II and EURECA, CrystEngComm, 2013

M. Willers **According to According the HAP Dark Matter 2015**

- Steady development towards complete in-house production of CaWO₄ crystals \checkmark
	- Production of raw powder: $CaCO₃ + WO₃ \rightarrow CaWO₄ + CO₂$
	- Crystal growth (Czochralski method) in Rh crucible (99%Ar / 1% O2)
	- Post growth treatment (annealing) to improve optical quality (100% $O₂$)
	- Cutting & polishing of crystals
- Dedicated oven & powder grinding machine to produce CaWO₄ powder
- Dedicated annealing oven
- CRESST-II Phase 2 : 4 TUM-grown crystals CRESST-III : majority of crystals foreseen to be TUM-grown

- Production of ray
-
-
- Cutting & polishi
-
- Dedicated annealing
- \bullet CRESST-II Phase 2 \circ

CRESST-III : majority of crystals foreseen to be TUM-grown

- Steady development towards complete in-house production of CaWO₄ crystals \checkmark
	- Production of raw powder: $CaCO₃ + WO₃ \rightarrow CaWO₄ + CO₂$
	- Crystal growth (Czochralski method) in Rh crucible (99%Ar / 1% O2)
	- Post growth treatment (annealing) to improve optical quality (100% $O₂$)
	- Cutting & polishing of crystals
- Dedicated oven & powder grinding machine to produce CaWO₄ powder
- Dedicated annealing oven
- CRESST-II Phase 2 : 4 TUM-grown crystals CRESST-III : majority of crystals foreseen to be TUM-grown

Improved Radiopurity: TUM40

Total α - Activities (1.5 - 7 MeV)

e -/ γ Background events below 50 keV

TUM40: 3.07 ± 0.11 mBq/kg commercial crystals: 3 - 107 mBq/kg (Münster et al., JCAP05(2014)018)

TUM40: 3.51 / (keV kg day) commercial crystals: 6 - 30 / (keV kg day) (Strauss et al., JCAP06(2015)030)

Significant improvement in radiopurity!

For TUM40 results see: EPJC (2015) 75:352

Further Improvement of Radiopurity

recrystallisation of CaWO₄ crystals

- growth of multiple crystals (segregation of impurities during crystal growth)
- cleaning of crucible / removal of remaining melt
- recrystallisation of produced crystals
- \rightarrow growth of crystal with improved radiopurity
- chemical cleaning of raw materials
	- CaWO4 powder cannot be cleaned (due to chemical / physical properties) \rightarrow cleaning of raw materials (currently CaCO₃)
	- Preliminary results: U extraction factor ~ *5000*, Th extraction factor ~ *1000* (detailed ICP-MS / HPGe measurements ongoing, check that no new impurities are introduced!)
- \rightarrow growth of crystal with improved radiopurity
- both methods currently under investigation (PhD thesis A. Münster (in preparation)) \rightarrow operation of crystal with further improved radiopurity planned for CRESST III

Further activities:

- \cdot Study influence of crystal growth / annealing on optical properties of CaWO₄ crystals (PhD thesis, A. Münster, in preparation)
- \cdot Investigate radiopurity of CaWO₄ via scintillation spectroscopy

(PhD thesis, M. v. Sivers, TUM 2014 (now University of Bern))

 \cdot Investigate scintillation mechanisms in CaWO₄

(PhD thesis S. Roth, TUM 2014 (now Queens University, Kingston), in collaboration with A. Ulrich, TUM E12)

• Investigate scintillator non-proportionality

(Master thesis C. Bruhn, TUM 2015)

Further activities:

- \cdot Study influence of crystal growth / annealing on optical properties of CaWO₄ crystals (PhD thesis, A. Münster, in preparation)
- \cdot Investigate radiopurity of CaWO₄ via scintillation spectroscopy

(PhD thesis, M. v. Sivers, TUM 2014 (now University of Bern))

 \cdot Investigate scintillation mechanisms in CaWO₄

(PhD thesis S. Roth, TUM 2014 (now Queens University, Kingston), in collaboration with A. Ulrich, TUM E12)

• Investigate scintillator non-proportionality

(Master thesis C. Bruhn, TUM 2015)

Summary:

- Complete in-house production of CaWO4 crystals for CRESST / EURECA \checkmark
- Significant improvement in radiopurity \checkmark (+ further potential for improvement!)
- Ongoing activities to study scintillation mechanism & optical properties

Development of Neganov-Luke Amplified Cryogenic Light Detectors

 \rightarrow Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM (e - γ / nuclear-recoil separation) and 0 $\nu\beta\beta$ (e- / α separation) experiments!

 \rightarrow Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM (e - γ / nuclear-recoil separation) and 0 $\nu\beta\beta$ (e- / α separation) experiments!

➝ Drifting of charge carriers in Electric field leads to increased phonon signal

$$
G_{\it th}=1+\frac{eV_{NL}}{E_{\it ph}/\eta}
$$

Ideally: no increase in el. noise \rightarrow improvement in S/N ratio \rightarrow improved sensitivity

 \rightarrow Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM (e - γ / nuclear-recoil separation) and 0 $\nu\beta\beta$ (e- / α separation) experiments!

Drifting of charge carriers in Electric field leads to increased phonon signal

$$
G_{\it th}=1+\frac{eV_{NL}}{E_{\it ph}/\eta}
$$

Ideally: no increase in el. noise \rightarrow improvement in S/N ratio \rightarrow improved sensitivity

Goal: Improve sensitivity (threshold / resolution) of cryogenic light detectors relevant for background suppression in both DM (e - γ / nuclear-recoil separation) and 0 $\nu\beta\beta$ (e- / α separation) experiments!

A typical silicon-based NL light detector:

light absorber: $20 \times 20 \times 0.5$ mm³, p-type, $\rho > 10$ k Ω cm *aluminum electrodes ~* 20 mm \times 0.2 mm \times 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

A typical silicon-based NL light detector:

light absorber: $20 \times 20 \times 0.5$ mm³, p-type, $ρ > 10kΩcm$ *aluminum electrodes ~* 20 mm \times 0.2 mm \times 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

- Typical NL voltages: \sim 70 150 V
- NL amplification: \sim 10 @ 70V (\sim 25 expected)
- additionally: reduction of amplification with time solved now \checkmark
- Currently under Investigation: Why can we apply "only" up to 150V? Why is the amplification lower than expected?

A typical silicon-based NL light detector:

light absorber: $20 \times 20 \times 0.5$ mm³, p-type, $ρ > 10kΩcm$ *aluminum electrodes ~* 20 mm \times 0.2 mm \times 250 nm, d ~ 6-18 mm (produced using a photolithographic shadow mask and Ar-Sputtering / EBE of Al)

- Typical NL voltages: \sim 70 150 V
- NL amplification: \sim 10 @ 70V (\sim 25 expected)
- additionally: reduction of amplification with time solved now $\mathbf v$
- Currently under Investigation: Why can we apply "only" up to 150V? Why is the amplification lower than expected? Why is the amplification lower than expected?

Neganov-Luke: Effective Gain

$$
G_{\textit{eff}} = 1 + \frac{e V_{\textit{eff}}(t)}{E_{\textit{ph}}/\eta} \cdot \frac{l_{\textit{drift}}}{d}
$$

Stark et. al, NIM A 545 (2005)

Neganov-Luke: Effective Gain

$$
G_{\it eff} = 1 + \frac{e V_{\it eff}(t)}{E_{\it ph}/\eta} \sqrt{\frac{l_{\it drift}}{d}}
$$

Stark et. al, NIM A 545 (2005)

Reduced drift length (ldrift< d):

• trapping of charge carriers $(\rightarrow G_{\text{eff}} < G_{\text{th}})$

Neganov-Luke: Effective Gain

$$
G_{eff}=1+\frac{eV_{eff}(t)}{E_{ph}/\eta}\left(\frac{l_{drift}}{d}\right)
$$

Stark et. al, NIM A 545 (2005)

Reduced drift length (ldrift< d):

• trapping of charge carriers (\rightarrow G_{eff} < G_{th})

Reduction of signal amplitude:

- Accumulation of drifted charge carriers close to aluminum electrodes \rightarrow Reduction of V_{eff} (& G_{eff}) over time
- Annealing of substrates (PhD s. Roth TUM 2014) \rightarrow Significant improvement

Isaila et al. Physics Letters B 716 (2012) PhD Thesis S. Roth, TUM 2014

Neganov-Luke Light Detectors - Planar Electrode Geometry

- Planar electrode geometry (shallow (implanted) ohmic contacts) V_{NL} applied between top/bottom face of light detector
- ➝ Drift of e/h pairs through bulk / *no drift across surface* of substrate!
- Very high electric fields possible $($ \sim 6.5 kV/cm)
- First measurements promising: no increase in noise / linear amplification / no charge trapping
- Detailed measurements in preparation!

In collaboration with X. Defay (Excellence Cluster Universe & TUM) "Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect", arXiv 1509.06266

Application: Background Suppression in TeO₂ Crystals

- 130 Te (TeO₂) promising 0νββ candidate
- \cdot α -events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599) plan to employ active background suppression techniques
	- \rightarrow detection of Cherenkov photons for e- / α discrimination (expected signal at $Q_{\beta\beta}(130 \text{ Te})$: ~ 100eV)

Application: Background Suppression in TeO₂ Crystals

- 130 Te (TeO₂) promising 0νββ candidate
- α -events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599) plan to employ active background suppression techniques \rightarrow detection of Cherenkov photons for e- / α discrimination (expected signal at $Q_{\beta\beta}(130\text{Te})$: ~ 100eV)

@TUM: first measurements showing feasibility of Cherenkov detection from TeO₂ using NL light detectors (2015 JINST 10 P03003)

Application: Background Suppression in TeO₂ Crystals

- 130 Te (TeO₂) promising 0νββ candidate
- α -events expected to be dominant background contribution in next-gen. experiments
- future-gen. experiments (CUPID arxiv 1504.03599) plan to employ active background suppression techniques \rightarrow detection of Cherenkov photons for e- / α discrimination (expected signal at $Q_{\beta\beta}(130 \text{ Te})$: ~ 100eV)

@TUM: first measurements showing feasibility of Cherenkov detection from TeO₂ using NL light detectors (2015 JINST 10 P03003)

Thank you for your attention!