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→ Foreground depends on messenger!
→ Foreground depends on wavelength!
→ Foreground depends on instrument!

1. A brief historical perspective
CR journey: global picture .2
3. DM indirect detection: foreground and targets
4. Simplex, complex, multiplex: GCR “model”
5. Detailed uncertainties for anti-protons
6. Positron fraction: a severe case of memory loss
7. -rays: fun facts about diffuse emissions



  

How cosmic rays were discovered and why they received this misnomer
Adv. in Space Res. 53 (2014) 1388–1404

Dorman & Dorman

As many great discoveries, the phenomenon of cosmic rays was discovered mainly 
accidentally, during investigations that sought to answer another question: what are 
sources of air ionization? This problem became interesting for science about 230 years ago 
in the end of the 18th century, when physics met with a problem of leakage of electrical 
charge from very good isolated bodies. [...] These discoveries were recognized among 
greatest in the 20th Century and were awarded by Nobel Prize.

1. Historical perspective

End of 19th century – J.J. Thomson
Electric conductivity of gasses strongly increases under the influence of X-rays 

and radiation from radioactive elements  
→ Theory of ionic conductivity of gasses

Start of 20th century (improved electroscope designs...)
● Radiation constantly ionizing the air
● Discharge of an electroscope explained by an insignificant number of ions in air

→ What is the nature of the unknown source of ions? 



  

1902-1909 – Improvements of apparatus, data at ground, sea, mountain level... w/o shielding 
Review of Kurtz (1909)

● -radiation from the earth’s crust;
● radiation coming from the atmosphere;
● radiation from space.

1909-11 – A. Gockel: 3 balloon flights @ 4500 m (unpressurised detector) 
1909-10 – T. Wulf: electroscope + measurements at Eiffel tower
1909-12 – D. Pacini: underwater (require non-terrestrial radiation)

1911: First measure of -ray attenuation in air, predict absorption for d≥500 m
→ “there should be other source of a penetrating radiation in addition
to -radiation from radioactive substances in earth crust”

1912: flights at ≠ times, ≠ atmospheric conditions (wind, pressure, T) 
3 Wulf electroscopes: (non-)hermetic, w/o shield (sensitive to -rays)
→ “can be explained by the assumption that radiation of the big penetrating
ability is coming into our atmosphere from above and even its bottom layers”

Resolutely rejected as improbable!

● A decade of unrewarded efforts...

 

● Ionisation constant with altitude (whereas decrease expected)

● Proof of existence: V. Hess (1911-1912) → “ultra-gamma radiation”

… and confirmation by Kolhörster (1913-1914)

Electroscope: speed of 
discharge related to 
distance change between 
the wires (microscope F)F

KolhörsterHess

1. Historical perspective: proof of extraterrestrial radiation



  

1. Historical perspective: opening the space age...



  

AMS-02 (on ISS) ~ 300 kmMountain altitude < 5 km CREAM balloon ~ 40 km
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R
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~ 8 kpc

2. Journey of a charged particle in the Galaxy 
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1. Source injection
● spectrum ~ R-2

● abundances

CRs: sourcesCharged G .2
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1. Source injection
● spectrum ~ R-2

● abundances

CRs: diffusionCharged G .2
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1. Source injection
● spectrum ~ R-2

● abundances

Galactic
wind

CRs: convectionCharged G .2



  

R
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~ 8 kpc

1. Source injection
● spectrum ~ R-2

● abundances

Galactic
wind

CRs: nuclear interactionsCharged G .2
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2. Transport in the Galaxy1. Source injection
● spectrum ~ R-2

● abundances
● energy gains/losses
● fragmentation/decay

● diffusion: R-

● convection

Galactic
wind

2. GCR transport



  

R
☼ 

~ 8 kpc

2. Transport in the Galaxy1. Source injection
● spectrum ~ R-2

● abundances
● energy gains/losses
● fragmentation/decay

● diffusion: R-

● convection

(nuclear physics)(plasma physics)

(astrophysics + particle physics)

Galactic
wind

2. GCR transport



  

Galactic cosmic rays or extra-galactic

→ Spectra and abundances 
(acceleration and transport)

2. Spectrum: galactic and extragalactic CRs

→ Origin of spectral features, composition, anisotropy?
→ Sources of the UHECRs
→ Transport in the cluster and inter-cluster medium



  

1. Cosmic rays in the Galaxy

→ Spectra and abundances 
(acceleration and transport)

2. Spectrum and abundances: GCRs

Beringer et al. (PDG), PR D86, 010001 (2012)

→ Source: nucleosynthesis + acceleration 
(injection/efficiency)
→ Transport: parameters required to provide 
the right abundances

Universal power-law = Fermi 1st order



  

2. Transport in the Solar cavity

1. Cosmic rays in the Galaxy

→ Spectra and abundances 
(acceleration and transport)

→ flux modulation < 10 GeV/n
→ time dependence

x 107

2. Spectrum: Solar Cosmic Rays

Galactic
Cosmic

Rays

→ Plenty of different components at 
low energy (transient and continuous)
→ Indirect effect of Solar Cosmic 
rays: solar modulation

N.B.: the Solar cavity is the first 
place where acceleration and 

propagation theories are tested



  

2. Transport in the Solar cavity

1. Cosmic rays in the Galaxy

→ Spectra and abundances 
(acceleration and transport)

→ flux modulation < 10 GeV/n
→ time dependence

x 107

CRs: Solar modulationCharged G .2
Galactic
Cosmic

Rays



  

2. Transport in the Solar cavity

1. Cosmic rays in the Galaxy

→ Spectra and abundances 
(acceleration and transport)

→ flux modulation < 10 GeV/n
→ time dependence

x 107

CRs: Solar modulationCharged G .2
Galactic
Cosmic

Rays

→ Solar modulation



  

2. Transport in the Solar cavity

1. Cosmic rays in the Galaxy

Cut-off rigidity for detectors →
→ Spectra and abundances 
(acceleration and transport)

3. Earth magnetic shield

→ flux modulation < 10 GeV/n
→ time dependence

size ~ 30 kpc
<t> ~ 20 Myr

x 107

size ~ 100 AU
<t> ~ a few years

size ~ 104 km

x 105

2. GCRs: need high statistics experiments!

Beischer et al. (2009)

→ Spectrum pbar, diffuse -rays, e- and e+

CR anisotropy <10-3  (≠ E and species) →
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Adapted from Moskalenko et al. (2004)
AMS, CREAM, PAMELA

ICE-cube
ANTARES

FERMI, CTA

AMS-02, GAPS

d
_

HESS
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→ Use LiBeB to calibrate transport

→ Search for DM where “standard” production is rare

3. Primary and secondary “rare” emissions



  

 Dark Matter
spherical halo

~ 300 kpc

Galactic disc
~ 15 kpc

8 kpc

3. “Transport” for neutral particles

Neutral particles 
- propagate in straight line
- absorption ~ negligible at GeV-TeV in the Galaxy

→ Observables = skymaps + spectra
→ Calculation = line-of-sight integration on 



  

8 kpc

Aquarius (MW-like) simulation – Springel et al (2008)

ΔΩ

1. Galactic centre

4. Dark halos

2. Dwarf spheroidal
galaxies

3. Galaxy clusters

Strategy: dense (~ ∫ ρ2)  +  close (1/d2)  +  no astrophysical background

Cluster

3. Best targets for indirect detection of  and ?

→ Background = diffuse emissions, unresolved sources, etc.



  

Effective
“volume” for 
contributing 

sources

8 kpc



Radio 
(magnetic)

halo
~ 10 kpc

Charge particles
- diffusion in turbulent B
- continuous and catastrophic losses

→ Observables = spectra (all species) + anisotropy
→ Calculation = diffusion equation (same for DM) 

Dark Matter
spherical halo

~ 300 kpc

Galactic disc
~ 15 kpc

3. Transport for charged particles

Neutral particles 
- propagate in straight line
- absorption ~ negligible at GeV-TeV in the Galaxy

→ Observables = skymaps + spectra
→ Calculation = line-of-sight integration on 



  

Effective
“volume” for 
contributing 

sources

8 kpc



Radio 
(magnetic)

halo
~ 10 kpc

Dark Matter
spherical halo

~ 300 kpc

Galactic disc
~ 15 kpc

?Clean and nice laboratory .3

Indirect detection targets
 → high signal (DM density)/background (sources/diffuse) regions
charged particles → positron, antiproton, antideuteron fluxes

Do we understand the “standard” fluxes (everywhere and anytime)?
● Sources (SN, pulsars, ...)
● Nucleosynthesis (r and s-process for heavy nuclei)
● Acceleration mechanisms (injection, B amplification, Emax)
● Propagation mechanisms (turbulence, spatial dependence, isotropy)
● Magneto-cosmico-gaseo properties of the Galaxy (MHD description)



  

Strong et al., ApJ 722 (2010) L58

→ Very inefficient for protons (escape)
→ Very efficient for electrons (convert e- to radiation)

→ GALPROP run (exact numbers depend on the model used)

3. Neat and nice electromagnetic calorimeter!
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1. Synthesis/acceleration
2. Transport 
3. Solar modulation

4. Acceleration, then transport (solar modulation later)



  

4. Acceleration: diversity of sources!
Damiano Caprioli (ICRC 2015)



  

4. Acceleration: how to simulate it?
Damiano Caprioli (ICRC 2015)



  

4. Acceleration: blockbuster(s)
Damiano Caprioli (ICRC 2015)

→ So far, in most (if not all) propagation models:
● Power-law or broken power-law (with cut-off at HE)
● No time-dependence in fluxes (except for HE)



  

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Reality: resonant wave-particle interaction with 
stochastic motion

[Adapted from R. Tautz (CRISM 2014)]

4. From microphysics to diffusion

https://indico.in2p3.fr/contributionDisplay.py?contribId=31&sessionId=9&confId=9027


  

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLGC

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

Reality: resonant wave-particle interaction with 
stochastic motion

[Adapted from R. Tautz (CRISM 2014)]

4. From microphysics to diffusion

https://indico.in2p3.fr/contributionDisplay.py?contribId=31&sessionId=9&confId=9027


  

● Physics problem: motion in a turbulent field

● Ansatz: diffusion equation

Unknown vx,y, unknown
position in Bx,y

Pitch angle =cos(v,B0)

Taylor-Green-Kubo formula

Can only be solved in ideal situations →
● Quasi-Linear Theory (B ≪B): QLT
● 2nd order QLT: SOQLT
● Non-linear guiding centre: NLGC

Numerical simulationsAnalytical calculation

- Mean free path

- Fokker-Planck coefficient

- Equation of motion (Lorentz)

Reality: resonant wave-particle interaction with 
stochastic motion... turbulence model requires:

● Energy spectrum (diff.eq. for wave!): W k-s

● Geometry
● Dynamical behaviour

- Instabilities
- Damped waved
- Intermittency 

Diffusion 
in MHD 

turbulence

[Adapted from R. Tautz (CRISM 2014)]

4. From microphysics to diffusion

https://indico.in2p3.fr/contributionDisplay.py?contribId=31&sessionId=9&confId=9027


  

4. A simple (and mostly) successful model



  

● Everywhere: planetary → galaxy clusters
● Typical amplitudes: ~ G – nT
● Two components (comparable strength):

✔ Regular B0 (large scale)
✔ Turbulent B (small scale), i.e. <B>=0

Milky Way (408 MHz)
http://apod.nasa.pod/ap011020.html

Diffusion+ 
confinement 
= geometry

Ekers & Sancisi, A&A 54, 973 (1977)

NGC 4631 (610 MHz)

→ D = D0 R

→ DEE   (pVA)2/D

Usual simplifying assumptions
● Isotropic (no preferred diffusion direction)
● Standard (no sub-diffusion, Levy flights...)
● Spatial-independent diffusion coefficient
● Wind: ⊥ to galactic plane (cst or linear)
● “Minimal” reacceleration (VA mediated)

Diffusion
coefficients

Geometry = camembert box 
→ Diffusive halo half-height ~ L

Magnetic fields

“Minimal” model
5 free parameters

D0, , VA, L, Vc

with =0

4. Simple geometry and ingredients: “base” model

http://apod.nasa.pod/ap011020.html


  

  (Semi-)analytical                             Numerical                                  Monte Carlo

Simplify the problem:
● keep dominant effects only
● simplify the geometry

Follow each particle:
● N particles at t=0
● evolve each of them to t+1

Finite difference scheme:
● discretise the equation
● scheme (e.g., Crank-Nicholson)

Codes 
and/or

references

Pros

cons

Webber (1970+)
Ptuskin (1980+)
Schlickeiser (1990+)
USINE (2000+)

GALPROP (Strong et al. 1998)
DRAGON (Evoli et al. 2008)

PICARD (Kissmann et al., 2013)

● Statistical properties (along path)
● No grid but t step (for/back)-ward

● Even slower (+ statistical errors)
● Massively parallel problem

● Very simple algebra
● Any new input easily included

● Slower, memory for high res.
● “Less” insight in the physics

Webber & Rockstroh (1997)
Farahat et al. (2008)
Kopp, Büshing et al. (2012)

Approach

● Useful to understand the physics
● Fast (MCMC analyses “simple”) 

● Only solve approximate model
● New solution for new problem

Tools ● Green functions, 
● Fourier/Bessel expansion
● Differential equations

● Stochastic differential equations 
(Markov process) + MPI

● Numerical recipes/solvers 
(NAG, GSL libraries)

4. Techniques/codes to solve the transport equation
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Donato et al., PRL 102, 071301 (2009)
Silk & Srednicki, PRL 53, 624 (1984)

Future developments:
→ Higher precision measurement from AMS-02
→ Decrease propagation uncertainties from AMS-02 data on nuclear species
→ Search for anti-deuterons: more constraining than antiproton, but difficult 

→ No excess: consistent with standard production
→ Main uncertainty (for background) comes from nuclear physics
→ No stringent exclusion limit (dominated by propagation uncertainties) 

Stecker, Rudaz & Walsh, PRL 55, 2622 (1985)

5. Antiprotons: 1979 → 2010



  
→ Acceleration mechanisms to provide a power law?
→ Same slope for all primary species?

5. Antiprotons: today's status

[not final analysis]

Giesen et al. (1504.04276)



  
→ Acceleration mechanisms to provide a power law?
→ Same slope for all primary species?

5. Antiprotons: today's status

[not final analysis]

Giesen et al. (1504.04276)

m
thresh



  
→ Acceleration mechanisms to provide a power law?
→ Same slope for all primary species?

5. Antiprotons: today's status

[not final analysis]

Giesen et al. (1504.04276)

→ Primary source (subdominant): He AMS-02 flux published soon + HE measurements
(…C-bNA49/61, LH) Cross-sections (dominant): need new measurements →

https://agenda.infn.it/contributionListDisplay.py?confId=9748

https://agenda.infn.it/contributionListDisplay.py?confId=9748


  

Sources
(acceleration in shock waves)

pC
Propagation (1)

(diffusion on magnetic inhomogeneities) 

Propagation (2)

Interaction
(with interstellar medium)

+ +

(H, He) (H, He)

B p
_

Detection on Earth…
can thus

be evaluated…
The B/C ratio

characterises propagation
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→ Same propagation history
(can also use 2H, 3He, Li, Be, Sub-Fe...)

5. Propagation uncertainty



  
→ Acceleration mechanisms to provide a power law?
→ Same slope for all primary species?

5. Antiprotons: today's status

[not final analysis]

Giesen et al. (1504.04276)

→ Primary source (subdominant): He AMS-02 flux published soon + HE measurements
(…C-bNA49/61, LH) Cross-sections (dominant): need new measurements →
→ Propagation uncertainty: better data soon (AMS-02) and several species necessary



  

Magnetic field is assumed to be frozen in solar wind plasma
→ Archimedean spiral in the solar equatorial plane

Parker, AJ 128 (1958), 664

Ideal Parker spiral magnetic field lines between 0 
and 25 AU for a solar wind speed of 450 km s–1. 

Black, blue, and red lines show heliographic 
latitudes of 0, 30, and 60 degrees, respectively

5. Solar modulation: B archimedian structure



  
→ Acceleration mechanisms to provide a power law?
→ Same slope for all primary species?

5. Antiprotons: today's status

[not final analysis]

→ Primary source (subdominant): He AMS-02 flux published soon + HE measurements
(…C-bNA49/61, LH) Cross-sections (dominant): need new measurements →
→ Propagation uncertainty: better data soon (AMS-02) and several species necessary
→ Solar modulation (only below a few GeV): should decrease using AMS-02 data

Giesen et al. (1504.04276)
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AMS collaboration, PRL 110, 1102 (2013)

HEAT balloon

Coutu et al., Aph 11, 429 (1999)

N.B.: due to severe E losses, high energy leptons are “local” (~ kpc)

Solar 
modulation

effect

6. Positron fraction: same game… but different!

→ Rise of the positron fraction confirmed by PAMELA and AMS-02

→ Uncertainties
- Production cross-sections: ~factor of 2-3 above a few 10 GeV (positron flux)
- Slope of the electron spectrum: ~ factor of 4 at 100 GeV (positron fraction)
- Transport: larger propagation uncertainties on positrons than on antinuclei

Delahaye et al., A&A 501 (2009) 821



  

electron

radio
waves

B

e-

X-ray

e-

Plasma (Coulomb)
Atomic matter (ionisation)

e-
Inverse
Compton

Synchrotron
Bremsstrahlung
(free-free)

6. Energy losses…



  

B tracers
● Faraday rotation: free e- (ionised regions)
● Synchrotron emission: CR e-

● Zeeman splitting: lines (neutral regions)
● Dust thermal emission, starlight polar.

Uncertainties [2 G < B
sync

 < 6 G]
● Geometry (z dependence)
● Arm-interarm strength
● Regular vs irregular component

electron

radio
waves

B

e-

X-ray

e-

Plasma (Coulomb)
Atomic matter (ionisation)

e-

Van Eck et al. ApJ 728 (2011) 97

                                             n
disc

 ~ 1 – 2 cm-3

● Distribution of HI, 
HII, H2, He...

● Geometry: radial 
and z-dependence

● Arm-interarm 
contrast

 Crucial for →
-ray emissions

Inverse
Compton

Synchrotron
Bremsstrahlung
(free-free)

Porter et al., ApJ 682 (2008) 400

6. Energy losses… and sources of uncertainties



  

General 
time-dependent

solution

Syrovatskii, Soviet Astronomy 3 (1959) 22

6. Transport equation/solution for leptons



  

But no data
to support

time-dependent 
behaviour

General 
time-dependent

solution

Syrovatskii, Soviet Astronomy 3 (1959) 22

6. Transport equation/solution for leptons (1959)

Synchrotron: B ~ 6 G
IC: negligible



  

Shen, ApJ 162 (1970) 181

Origin of high energy electrons (TeV)

● t
IC

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D

6. Transport equation/solution for leptons (1970)



  

Shen, ApJ 162 (1970) 181

Procedure 
(use of 50 pulsars)

Origin of high energy electrons (TeV)

● t
IC

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D

→ sources @ r>1kpc: continuous space-time distribution
→ sources @ r<1kpc

6. Transport equation/solution for leptons (1970)



  

Shen, ApJ 162 (1970) 181

Procedure 
(use of 50 pulsars)

Origin of high energy electrons (TeV)

● t
IC

~ 0.3 Myr

● d
max

 ~ (2Dt)1/2 → d
max

 ~ 1 kpc

 Singe source 
and cut-off in HE 

spectrum
→ very sensitive

to D

→ sources @ r>1kpc: continuous space-time distribution
→ sources @ r<1kpc

6. Transport equation/solution for leptons (1970)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265
Electrons and positrons in the galactic cosmic rays

 → Apply procedure of Shen (1970)
→ More general solutions and analysis 



  

Positron fraction: origin of the rise at high energy

→ 'Natural' astrophysical prediction (local SNRs, pulsars)

Boulares (1989)

6. So, there was this guy...



  

Aharonian et al., A&A 26 (1995) 41

6. And then some other guys...



  

Positron fraction: origin of the rise at high energy

Next steps
→ Go to higher energy with AMS-02 (search for sharp cutoff)
→ Study separately e- and e+ spectra, combine with antiproton constraints
→ Refine pulsars and propagation description

 ...positrons are probably the worse place to look for DM

6. So what would you bet on?

→ Not much control yet on the astrophysical background!
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→ Hopefully, what remains is the diffuse emission

Count the number of (1
(photons-instrument background)

2) Subtract point sources

EGRET >100 MeV

7. Diffuse emission for dummies



  

2) Experimental issues
DE can me mismatched from unresolved point sources! This depends on:

- the angular resolution and/or sensitivity
1999: OSSE find that 50% DE for soft -ray (<300 keV)     [Kinzer et al., ApJ 515, 215]

2000: Hint at unresolved point sources 

HIREGS [Boggs et al., ApJ 544, 320] + OSSE&RXTE [Valinia et al., ApJ 534, 277]
2004: INTEGRAL find almost no diffuse emission [Lebrun, Terrier et al., Nature 428, 293]

- Analysis method and/or assumptions
2008: new EGRET analysis, 188  sources instead of 271!  [Casandjian & Grenier, A&A 489, 849]

1) Astrophysical point of view 
-  point-like sources (e.g., SN remnants, AGN...)
-  extended emission (e.g. plerions, GMC in the vicinity of a source...)
-  diffuse-like emission (DE from the galactic disk, ridge, extragalactic DE...)

IBIS-ISGRI (20-60 keV)

?Control on diffuse emissions .7



?Correlation with LMXB →  

Weidenspointner et al., Nature 451, 159 (2008)

Latest results

→ Light Dark matter?

Knödlseder et al., A&A 441, 513 (2003)

Weidenspointner et al., A&A 450, 1013 (2006)

O
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49
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First results

7. The soft -ray sky and the 511 keV line



  

Conclusions

N.B.: no standard propagation model yet, barely 
parameter values from various 'effective' models 

Status of “Simple” propagation models (homogeneous diffusion)
● Anti-protons: consistent with astrophysics only
● Anti-deuterons: astrophysics background level within reach soon (GAPS, AMS-02)
● High energy e+/e-: local sources may reproduce any feature seen in data  
● Diffuse -rays: can be tuned to reproduce Fermi-LAT data (GALPROP) 

→ Uncertainties from production cross-sections are a limiting factor!

But some features…
● Break in p and He spectra et ~ 300 GV (PAMELA, AMS-02)
● GeV -rays: Fermi bubble + p flux variability from molecular clouds
● GeV -rays: H.E.S.S. galactic centre signal dominated by “one” active source

→ Looking at small scales (high angular resolution) requires to go beyond the 
“averaged” picture

Experimentally: need high precision measurement up to the highest energy + multi-
wavelength observation 
→ may provide clues on specific E scales and phenomena indicating non-universal 
features of injection, acceleration, escape (from the source) and/or propagation

For more, see Pasquale Serpico's talk @ ICRC
Possible physics scenarios behind cosmic ray “anomalies”
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