ST

Karlsruher Institut fur Technologie

Fortran 95/2003 Course

Operators and Control Constructs — Robert Barthel
March 24, 2015

STEINBUCH CENTRE FOR COMPUTING - SCC

B

Y

-

!

KIT — University of the State of Baden-Wirttemberg and
National Laboratory of the Helmholtz Association

References A\‘(IT

@ To download this slides, go to:
http://indico.scc.kit.edu/indico/event/fortran_2015-03/
and follow buttons: Overview — Slides

| Wikis:
http://fortranwiki.org/fortran

https://en.wikibooks.org/wiki/Fortran

24.03.15 Operators and Control Constructs g ; C g ; Steinbuch Centre for Computing

http://indico.scc.kit.edu/indico/event/fortran_2015-03/
http://fortranwiki.org/fortran
https://en.wikibooks.org/wiki/Fortran

Structuring Fortran Code A\‘(IT

Karlsruhe Institute of Technology

Fortran Code

® Declaration section:

® Nonexecutable statements
PROGRAM, REAL, INTEGER

Declaration section

@ Execution section:
® Statements describing actions
— Operators & Control Constructs

Execution section

® Termination section:

® Statements stopping execution Termination section '

STOP, END

24.03.15 Operators and Control Constructs : ; C g ; Steinbuch Centre for Computing

4

24.03.15

SKIT

Karlsruhe Institute of Technology

Operators

Operators and Control Constructs

@AC‘Q Steinbuch Centre for Computing

Operators - Overview &‘(IT

stitute of Technology

@ Purpose: Combine variables and form new values

@ 5 Types of (intrinsic) operators:
®= 1. Assignment operator
® 2. Arithmetic operators
® 3. Relational operators
® 4. Logical operators
= 5. Concatenation operator

® Precedence of operators is important!

24.03.15 Operators and Control Constructs g}xgis ; Steinbuch Centre for Computing

Assignment Operator &‘(IT

Karlsruhe Institute of Technology

@ Assignment operator in Fortran: "="

a = value/constants

® Variables may have different types (INTEGER, REAL, ..)

@ Memory:
® Variable points to fixed memory location containing a value
® Variable is changed if memory location is changed

® Processor loads data from memory, changes data and stores data
back to the memory location

@ Variables and constants can be combined to expressions
® — can be continued for up to 40 lines

a = bxc &
+ pi/2*cos (2*pix*t)

24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

Arithmetic Operators &‘(IT

Karlsruhe Institute of Technology

@ 5 built-in numeric operations

+ addition a+b
- subtraction a-»>o
multiplication a *b
/ division a/ b
* % exponentiation a ** b

® For INTEGER, REAL and COMPLEX variables
® Usable for array operations

@ Arithmetical evaluation:
® from left to right (except for exponentiation: right to left!)

a = 2.%%2
b = -2.%%x2
C = —2.%*2, —— Raising a negative REAL at (1) to a REAL power is prohibited

24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Relational Operators A\‘(IT

Karlsruhe Institute of Technology

@ 6 relational operators

== a==> equal .eq.

/= a/=b Not equal .ne.

>= a>=b Greater or equal .ge.

> a>b Greater than .gt.

<= a <= b Lesser or equal Jle.

< a <b Lesser than At.

@ Usable for INTEGER, REAL, COMPLEX CHARACTER (LEN=6) :: chil, ch?2
variables and CHARACTER strings! LOGICAL :: cmp

® Relations create logical values cmp = chl<=ch2

24.03.15 Operators and Control Constructs g ; C g ; Steinbuch Centre for Computing

Logical Operators A\‘(IT

Karlsruhe Institute of Technology

@ 5 logical operators

.and. a .and. b conjunction true if both a and b are true
.0T. a .or. b disjunction true if at least one of a and b is true
.eqv. a .eqv. b equivalence true if both a and b are true or

if both a and b are false

.neqv. a .neqv. b antivalence true if a is true and b is false or
if a is false and b is true

.not. a<=b negation true if a is false

@ Only usable for logical variables

W Parentheses usable as LUENERL 25 lao Ly, 1, LEEs
REAL :: a, b, c

lres = (b>0).or.(la .eqv. 1lb .or. a==c)

for arithmetic operators

@ Not like C-derived languages:
® LOGICAL is not a sort of INTEGER tres—b—egvr—1b

24.03.15 Operators and Control Constructs : ; C g ; Steinbuch Centre for Computing

Concatenation Operators A\‘(IT

stitute of Technology

@ Fortran has only one character operator, the concatenation operator

Jr
CHARACTER (LEN=4) :: chl
CHARACTER (LEN=6) :: ch2
CHARACTER (LEN=10) :: ch3
chl = "John"; ch2 = " Smith"
ch3 = chl // ch2

® Concatenation operator cannot be used with arithmetic operators

@ Two strings s1 and s2 of lengths m and n,
— Length is m+n

10 24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

Precedence of Operators (1) A\‘(IT

stitute of Technology

@ Fortran uses mathematical conventions
® Operators bind according to precedence
® Then interpretation from left to right (except for exponentiation)
® Grouping by parentheses

® Precedence from highest to lowest:

1.) * 5k

2.) *x, /

3.) +, -

4.) //

5.) ==, /=, >=, >, <=, <
6.) .not.

7.) .and.

8.) .OT.

9.) .eqv., .neqv.

11 24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Precedence of Operators (2) A\‘(IT

stitute of Technology

@ Examples

a+b/c IS equivalent to a+(b/c)
a-b+c IS equivalent to (a-b)+c
a+bx*xc IS equivalent to a+ (bxxc)
a/b*c IS equivalent to (a/b)*c
a*x*xbx*c IS equivalent to a** (b*x*xc)

® You can force any order you like
(a+b)/c adds a to b and then multiplies the sum by ¢

12 24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

13

Parenthesis Problems &‘(IT

stitute of Technology

@ Always use parentheses in ambiguous cases

® Helps readers used to different rules

Programming languages vary in what they do

@ Be careful of over-doing it

(((a +(p*r +b) /2 + b**3) / (4/y)*c+d)+e)

Several simple statements is better style

24.03.15 Operators and Control Constructs écv 5 ; Steinbuch Centre for Computing

INTEGER expression &‘(IT

Karlsruhe Institute of Technology

® Expressions of integer constants and variables

INTEGER :: k, 1, m, n
n = kx(1+2)/m**3-n

These are evaluated in integer arithmetic

@ Division always truncates towards zero

INTEGER :: k=4, 1=5, m=7, n=3
write(*x,*) k+1/2
write(*,*) (-m)/n, m/(-n)

— Output

14 24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

Mixed-mode expression A\‘(IT

Karlsruhe Institute of Technology

@ INTEGER and REAL is evaluated as REAL, but

INTEGER :: k = 5
REAL :: x = 1.3
write(*,*) x + k/2
write(*x,*x) x + k/2.

@ INTEGER/REAL and COMPLEX — INTEGER/REAL is evaluated as real
part of COMPLEX

INTEGER :: k = 5

REAL x =1.3
COMPLEX :: c = (2,3)
write(*x,*x) c + k
write(*,*x) c + x
Write(*,*) c + cmplx(0,x)

15 24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

Conversions

® Several ways to enforce conversion
® |ntrinsic functions INT, REAL and COMPLEX

o
I

INTEGER :: k = 5, n
REAL ::

x + REAL(k)/2

x =1.3

100*INT(x/0.75) + 25

@ Use appropriate constants

x =x + k/2.

® You can even add zero or multiply by one

X:

x+(k+0.)/2.

16 24.03.15

Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

S&\C*Is ; Steinbuch Centre for Computing

Mixed-type assigments &‘(IT

Karlsruhe Institute of Technology

<real_variable> = <integer_expr>

— Ther.h.s. is converted to REAL

<integer_variable> = <real_expr>

— The r.h.s. is truncated to INTEGER (towards zero)

Similar remarks apply to COMPLEX

The imaginary part is discarded
@ Example: Output:

INTEGER :: k=9, 1=5, m=3, n
REAL :: x, y, z

x=k; y=1; z =m

n = k/1*m; PRINT *, n 3
n = x/y*z; PRINT *, n 5

17 24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

SKIT

Karlsruhe Institute of Technology

Control Contructs

18 24.03.15 Operators and Control Constructs @ Steinbuch Centre for Computing

Control Constructs - Overview &‘(IT

stitute of Technology

® Why? — Implementation of algorithms Fortran Code
® Change of sequential execution order

® Similar in all procedural programming
languages

Declaration section

® 3 main block constructs:

® Conditionals (IF etc.)
" Loops (b0 etc.) Execution section
® Switches (SELECT/CASE etc.)

® All blocks can be nested

@ All may have construct names — .
® Readability Termination section '

® |ncrease flexibility

19 24.03.15 Operators and Control Constructs @ Steinbuch Centre for Computing

20

Single statement IF &‘(IT

Karlsruhe Institute of Technology

@ Simplest form of conditional:

IF (logical expr) statement

® If logical expression is . TRUE., statement is executed.
If not, whole statement has no effect.

® Only action statements allowed

@ No IFs or statements containing blocks allowed

24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Block IF statement

® Block IF is more flexible:

IF (logical expr) THEN
block of statements 1
ELSE
block of statements 2

ENDIF

If logical expression is . TRUE.,
first block is executed.
® |f not, second block is executed.
® ELSE block may be omitted
® ENDIF may be spelled END IF

21 24.03.15 Operators and Control Constructs

SKIT

stitute of Technology

& Y Steinbuch Centre for Computing

Including ELSEIF blocks (1) A\‘(IT

Karlsruhe Institute of Technology

@ ELSEIF works much like ® Use as many ELSEIF blocks as you
ELSE and IF want
IF (logical expr 1) THEN ® Only one ENDIF for all blocks

block of statements 1
ELSEIF (logical expr 2) THEN

ek of ctaitanehce 9 @ All ELSEIFs must come before any
ELSEIF (logical expr 3) THEN ELSE

block of statements 3

@ Checked in order, first success is

ELSE taken!
block of statements n

ENDIF _
@ ELSE may be omitted

@ ELSEIF may be spelled ELSE IF

22 24.03.15 Operators and Control Constructs @ Steinbuch Centre for Computing

Named IF statements

@ TF can be preceded by <name>:

— Then ENDIF must be followed
by <name> !

— Any ELSEIF/THEN and ELSE
may be

nsol: IF (n < 10) THEN
PRINT *, n, ' is smaller than 10'
ELSE IF (n >= 10.and.n < 50) THEN nsol
PRINT *, n, ' is between 10 and 50'
ELSE IF (n < 100) THEN =nsol
PRINT *, n, ' is between 50 and 100'
ELSE IF (.not.lvar) THEN nsol
PRINT *, 'error'
ELSE
CALL COMP_SOL(n)
END IF nsol

23 24.03.15 Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

@ Pitfalls:

® <name> does not match
and not distinct

@ How/Why to use?

® Great help for checking
and clarity

® At least all long IF blocks
should be named

® |f not too many nested IF
blocks, the <name> can
be omitted at the end for
ELSEIF/THEN and

ELSE line

g}xgis ; Steinbuch Centre for Computing

Basic loops

@ Basic syntax

24

[loop name:] DO [loop controll

block of statements
ENDDO [loop name]

loop name: optional
loop control: optional

— without loop control, it loops
indefinitely

ENDDO may be spelled:
END DO

24.03.15 Operators and Control Constructs

T

Karlsruhe Institute of Technology

A

@ Examples:

myloop: do
write(*,*) 'Hello World!'
end do myloop

® How/Why to use?
® Give distinct loop names

® Great help for checking and
clarity

®= At least all long DO loops
should be named

@ Steinbuch Centre for Computing

Indexed loop control (1) A\‘(IT

Karlsruhe Institute of Technology

@ Syntax:

DO <int_var> = <1_b>, <u_b>

@ Lower bound <1_b> } - _
any integer expression
Upper bound <u_b> y J P
@ loop control variable <int_var>

— starts at the lower bound

@ Mechanism: do i =1, 10
® Top: <int_var> exceeds upper bound write(*,*) i
— loop exits 1]
® Toop body is executed end do L
. <i .
<int_var> is incremented by one Frror: Variable 'i'
® | oop starts again from top at (1)
cannot be redefined
inside loop beginning
@ Loop control variables must not be changed within loop! at (2)

25 24.03.15 Operators and Control Constructs @ Steinbuch Centre for Computing

26

Indexed loop control (2)

@ Example 1:

do i =1,3
write(*,*) B5xi-2
end do

— Prints 3 lines containing 3, 8, 13

@ Example 2:

do i = 3,1
write(*,*) Bbxi-2
end do

— Does nothing!

24.03.15 Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

S&\C*Is ; Steinbuch Centre for Computing

Loops: Using an increment (1) A\‘(IT

Karlsruhe Institute of Technology

® General form: @ Examples1:
DO <int _var> = <1 _b>, <u_b>, <inc> do i = 1,20,7
write(*,*) 5*i-2
o end do
@ <int_var> is incremented by

<inc>, not by one
@ Until it exceeds <u_b> (if <inc> is

— Prints 3 lines containing 3, 38, 73

ositive
P) @ Example 2:
or
_ - _ do i = 20,1,7
is smaller than <u_b> (if <inc> is write (*,%) 5%i-2
negative) end do

)) . — Does nothing!
® sign of <inc> — direction J

@ <inc> must not be zero!

24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Loops: Using an increment (2) A\‘(IT

Karlsruhe Institute of Technology

O @ Examples 3:
DO <int_var> = <1_b>, <u_b>, <inc> do i = 20,1,-7
write(*,*x) b5*i-2
end do
|
— Prints 3 lines containing 98, 63, 28
|
@ Example 4:
do i = 1,20,-7
write(*,*) B5xi-2
end do
a — Does nothing!
|

28 24.03.15 Operators and Control Constructs @AC‘Q Steinbuch Centre for Computing

29

Loop Control Statements

EXIT leaves normally the innermost loop
CYCLE skips to the next iteration

@
0
@ EXIT/CYCLE <name> is for the loop named <name>
@

Example:

FirstMatch = 0O
outer: DO i1 = 1,cols
IF (state(i) /= 1) CYCLE
inner: DO j = 1,rows
IF (table(i,j) == limit) THEN
FirstMatch = 1
EXIT outer
ENDIF
ENDDO inner
ENDDO outer

24.03.15 Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

@ Steinbuch Centre for Computing

WHILE Loop Control &‘(IT

Karlsruhe Institute of Technology

® L[oop control has the following form: ® Slower than loops
with known control
HILE (logical :
W (logical expr) variables
: L a :
® |ogical expression is evaluated for Example:
each cycle i= 1
@ |Loop exits as soon as it becomes DO WHILE (a(i) <= 0.0)
.FALSE. i=1+1
. : _ ENDDO
® The following are equivalent: first_positive = i

DO WHILE (logical expr)

and

DO
IF (.NOT.(logical expr)) EXIT

30 24.03.15 Operators and Control Constructs écv 5 ; Steinbuch Centre for Computing

Multi-way IFs AT

Karlsruhe Institute of Technology

IF (expr == vall) THEN

ELéﬁiF (expr >= val2 .AND. expr <= val3) THEN
ELéﬁiF (expr == val4) THEN

ELSE.

ENDIF

@ Very commonly, <expr> is always the same
and
all of the <val <> are constant expressions

— But there is another way of coding it

31 24.03.15 Operators and Control Constructs écv 5 ; Steinbuch Centre for Computing

CASE construct (1)
® CASE clauses are statements

@ The values must be initialization
expressions
" Allowed:
INTEGER, CHARACTER,
LOGICAL

® Example 2:

integer :: a,b
select case (a>b)
case (.true.)

write(*x,x) 'a > b'
case (.false.)
write(*x,x) 'a <= b'

end select

32 24.03.15 Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

® Example 1:

integer :: 1

SELECT CASE (i)
CASE (1:3)
write (*,x*)
CASE (4:)
write (*,x*)
CASE DEFAULT
write (*,x*)
END SELECT

'integer =', i
'integer above 3'

'integer below 1'

& Y Steinbuch Centre for Computing

33

CASE construct (2) &‘(IT

Karlsruhe Institute of Technology

Single line per ,case” possible: | case (18); <statement>

Ranges for INTEGER and CHARACTER possible

CASE (-42:42) ! -42 to 42 inclusive
CASE (42:) | 42 or above
CASE (:42) I up to and including 42

— ranges must not overlap! — error.

SELECT CASE may be spelled SELECTCASE

END SELECT may be spelled ENDSELECT

CASE DEFAULT must not be spelled CASEDEFAULT!
SELECT and CASE may be named (like IF)

No error:

® Empty ranges (they don‘t overlap with anything)
® DEFAULT unreachable

24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

WHERE statement (1)

@ For selective array assignment
® Basic Syntax

WHERE (logical expr 1)
array = value

ELSEWHERE (logical expr 2)

ELSEWHERE

END WHERE

34 24.03.15 Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

@ Example:

INTEGER :: A(12)
A=(1,2,3,4,5,6,7,8,9,10,11,12 /)
WRITE (*,%*) A

WHERE (A == A/2%2) A=0
WRITE(*,*) A

1 2 3 4 65 6 T 8 9 10 11 12
1 O 3 0 b O 7 O 9 0 11 0

& Y Steinbuch Centre for Computing

WHERE statement (2) &‘(IT

Karlsruhe Institute of Technology

® Example 2: take logarithm of the elements of rank-2 array

DO i = 1, dimA
DO j = 1, dimB
IF (array(i,j) > 0.) THEN
logval(i,j) = LOG(array(i,j))
ELSE
logval(i,j) = -1
ENDIF
ENDDO
ENDDO

— simplification via ,masked array assignment”

WHERE (array > 0.)
logval = LOG(array)
ELSEWHERE
logval = -1
END WHERE

24.03.15 Operators and Control Constructs S C ! Steinbuch Centre for Computing

FORALL Construct (1) &‘(IT

Karlsruhe Institute of Technology

@ Permits operations on element-by-element basis to
® Subset of an array
® By subscript index & logical conditions

FORALL (triple [,triplel [,mask])
var = val
END FORALL

<triple> = <initial>:<final>[:<inc>]

® Example:

array = 0.0

FORALL (i=1:3,j=1:3,i==j) 1 0 o
array(i,j) = 1.0 >0 1 0

END FORALL v 0 i

36 24.03.15 Operators and Control Constructs & Y Steinbuch Centre for Computing

FORALL Construct (2) &‘(IT

Karlsruhe Institute of Technology

® Significance to nested DO loops with IF block construct?

array = 0.0 array = 0.0
FORALL (i=1:3,j=1:3,i==j) DO i=1,3
array(i,j) = 1.0 — DO j=1,3
END FORALL IF (i == j) THEN
array(i,j) = 1.0
ENDIF
ENDDO
ENDDO

— statements in DO loops executed in a strict order

— statements in FORALL executed in any order (selected by processor)
— this freedom helps to optimize program for maximum speed

37 24.03.15 Operators and Control Constructs S C ! Steinbuch Centre for Computing

FORALL Construct (3) &‘(IT

38

Karlsruhe Institute of Technology

Properties:
— each statement (— red, blue) is entirely completed before next one

FORALL (i=2:n-1, j=2:n-1)
d(i,j) = 0.25%x(c(i,j+1)+c(i,j-1)+ c(i+1,j)+c(i-1,j)-c(i,j))
c(i,j) = c(i,j)+eps*d(d,j)

END FORALL

Single-line FORALL statement

FORALL (triple [,triple] [,mask]) array=val

— Example:

FORALL (i=1:n, j=1:n, a(i,j) .ne. 0.0) b(i,j) = 1.0/a(i,j)

24.03.15 Operators and Control Constructs @AC‘Q Steinbuch Centre for Computing

Obsolete Fortran Features (1) QAT
® Do not use: Arithmetic IF statement

IF (x-y) 10, 20, 30
10 (code for negative case)

GOTO 100

20 (code for zero case)
GOTO 100

30 (code for positive case)

100 CONTINUE

39 24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Obsolete Fortran Features (2) A\‘(IT

Karlsruhe Institute of Technology

® Do not use: Unconditional GOTO statement

IF (condition) GOTO 10

10 execution_statement

— redesign your code using named loops, branches
— excessive use of GOTO leads to ,spaghetti code”

® Do not use: older forms of DO loops, e.g. ,good” FORTRAN 77 code

DO 200 i = 1, 10
WRITE(*,*) i
200 CONTINUE

40 24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing

Karlsruhe Institute of Technology

El'hank you for your attentionﬂ

| 24.03.15 Operators and Control Constructs g}xgis ; Steinbuch Centre for Computing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

