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Structuring Fortran Code A\‘(IT

Karlsruhe Institute of Technology

Fortran Code

® Declaration section:

® Nonexecutable statements
PROGRAM, REAL, INTEGER

Declaration section

@ Execution section:
® Statements describing actions
— Operators & Control Constructs

Execution section

® Termination section:

® Statements stopping execution Termination section '

STOP, END
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Operators - Overview &‘(IT

stitute of Technology

@ Purpose: Combine variables and form new values

@ 5 Types of (intrinsic) operators:
®= 1. Assignment operator
® 2. Arithmetic operators
® 3. Relational operators
® 4. Logical operators
= 5. Concatenation operator

® Precedence of operators is important!
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Assignment Operator &‘(IT
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@ Assignment operator in Fortran: "="

a = value/constants

® Variables may have different types (INTEGER, REAL, ..)

@ Memory:
® Variable points to fixed memory location containing a value
® Variable is changed if memory location is changed

® Processor loads data from memory, changes data and stores data
back to the memory location

@ Variables and constants can be combined to expressions
® — can be continued for up to 40 lines

a = bxc &
+ pi/2*cos (2*pix*t)
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Arithmetic Operators &‘(IT
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@ 5 built-in numeric operations

+ addition a+b
- subtraction a-»>o
multiplication a *b
/ division a/ b
* % exponentiation a ** b

® For INTEGER, REAL and COMPLEX variables
® Usable for array operations

@ Arithmetical evaluation:
® from left to right (except for exponentiation: right to left!)

a = 2.%%2
b = -2.%%x2
C = —2.%*2, ——  Raising a negative REAL at (1) to a REAL power is prohibited
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Relational Operators A\‘(IT
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@ 6 relational operators

== a==> equal .eq.

/= a/=b Not equal .ne.

>= a>=b Greater or equal .ge.

> a>b Greater than .gt.

<= a <= b Lesser or equal Jle.

< a <b Lesser than At.

@ Usable for INTEGER, REAL, COMPLEX CHARACTER (LEN=6) :: chil, ch?2
variables and CHARACTER strings! LOGICAL :: cmp

® Relations create logical values cmp = chl<=ch2
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Logical Operators A\‘(IT
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@ 5 logical operators

.and. a .and. b conjunction true if both a and b are true
.0T. a .or. b disjunction true if at least one of a and b is true
.eqv. a .eqv. b equivalence true if both a and b are true or

if both a and b are false

.neqv. a .neqv. b antivalence true if a is true and b is false or
if a is false and b is true

.not. a<=b negation true if a is false

@ Only usable for logical variables

W Parentheses usable as LUENERL 25 lao Ly, 1, LEEs
REAL :: a, b, c

lres = (b>0).or.(la .eqv. 1lb .or. a==c)

for arithmetic operators

@ Not like C-derived languages:
® LOGICAL is not a sort of INTEGER tres—b—egvr—1b
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Concatenation Operators A\‘(IT
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@ Fortran has only one character operator, the concatenation operator

Jr
CHARACTER (LEN=4) :: chl
CHARACTER (LEN=6) :: ch2
CHARACTER (LEN=10) :: ch3
chl = "John"; ch2 = " Smith"
ch3 = chl // ch2

® Concatenation operator cannot be used with arithmetic operators

@ Two strings s1 and s2 of lengths m and n,
— Length is m+n
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Precedence of Operators (1) A\‘(IT
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@ Fortran uses mathematical conventions
® Operators bind according to precedence
® Then interpretation from left to right (except for exponentiation)
®  Grouping by parentheses

® Precedence from highest to lowest:

1.) * 5k

2.) *x, /

3.) +, -

4.) //

5.) ==, /=, >=, >, <=, <
6.) .not.

7.) .and.

8.) .OT.

9.) .eqv., .neqv.

11 24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing



Precedence of Operators (2) A\‘(IT
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@ Examples

a+b/c IS equivalent to a+(b/c)
a-b+c IS equivalent to (a-b)+c
a+bx*xc IS equivalent to a+ (bxxc)
a/b*c IS equivalent to (a/b)*c
a*x*xbx*c IS equivalent to a** (b*x*xc)

® You can force any order you like
(a+b)/c adds a to b and then multiplies the sum by ¢
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Parenthesis Problems &‘(IT
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@ Always use parentheses in ambiguous cases

® Helps readers used to different rules

Programming languages vary in what they do

@ Be careful of over-doing it

(( (a +(p*r +b) /2 + b**3) / (4/y)*c+d)+e )

Several simple statements is better style
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INTEGER expression &‘(IT

Karlsruhe Institute of Technology

® Expressions of integer constants and variables

INTEGER :: k, 1, m, n
n = kx(1+2)/m**3-n

These are evaluated in integer arithmetic

@ Division always truncates towards zero

INTEGER :: k=4, 1=5, m=7, n=3
write(*x,*) k+1/2
write(*,*) (-m)/n, m/(-n)

— Output
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Mixed-mode expression A\‘(IT
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@ INTEGER and REAL is evaluated as REAL, but

INTEGER :: k = 5
REAL :: x = 1.3
write(*,*) x + k/2
write(*x,*x) x + k/2.

@ INTEGER/REAL and COMPLEX — INTEGER/REAL is evaluated as real
part of COMPLEX

INTEGER :: k = 5

REAL x =1.3
COMPLEX :: c = (2,3)
write(*x,*x) c + k
write(*,*x) c + x
Write(*,*) c + cmplx(0,x)
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Conversions

® Several ways to enforce conversion
® |ntrinsic functions INT, REAL and COMPLEX

o
I

INTEGER :: k = 5, n
REAL ::

x + REAL(k)/2

x =1.3

100*INT(x/0.75) + 25

@ Use appropriate constants

x =x + k/2.

® You can even add zero or multiply by one

X:

x+(k+0.)/2.

16 24.03.15

Operators and Control Constructs

SKIT

Karlsruhe Institute of Technology

S&\C*Is ; Steinbuch Centre for Computing



Mixed-type assigments &‘(IT
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<real_variable> = <integer_expr>

— Ther.h.s. is converted to REAL

<integer_variable> = <real_expr>

— The r.h.s. is truncated to INTEGER (towards zero)

Similar remarks apply to COMPLEX

The imaginary part is discarded
@ Example: Output:

INTEGER :: k=9, 1=5, m=3, n
REAL :: x, y, z

x=k; y=1; z =m

n = k/1*m; PRINT *, n 3
n = x/y*z; PRINT *, n 5
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Control Contructs
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Control Constructs - Overview &‘(IT
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® Why? — Implementation of algorithms Fortran Code
® Change of sequential execution order

® Similar in all procedural programming
languages

Declaration section

® 3 main block constructs:

® Conditionals (IF etc.)
" Loops (b0 etc.) Execution section
® Switches (SELECT/CASE etc.)

® All blocks can be nested

@ All may have construct names — .
® Readability Termination section '

® |ncrease flexibility
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Single statement IF &‘(IT
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@ Simplest form of conditional:

IF (logical expr) statement

® If logical expression is . TRUE., statement is executed.
If not, whole statement has no effect.

® Only action statements allowed

@ No IFs or statements containing blocks allowed
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Block IF statement

® Block IF is more flexible:

IF (logical expr) THEN
block of statements 1
ELSE
block of statements 2

ENDIF

If logical expression is . TRUE.,
first block is executed.
® |f not, second block is executed.
® ELSE block may be omitted
® ENDIF may be spelled END IF

21 24.03.15 Operators and Control Constructs
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Including ELSEIF blocks (1) A\‘(IT
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@ ELSEIF works much like ® Use as many ELSEIF blocks as you
ELSE and IF want
IF (logical expr 1) THEN ® Only one ENDIF for all blocks

block of statements 1
ELSEIF (logical expr 2) THEN

ek of ctaitanehce 9 @ All ELSEIFs must come before any
ELSEIF (logical expr 3) THEN ELSE

block of statements 3

@ Checked in order, first success is

ELSE taken!
block of statements n

ENDIF _
@ ELSE may be omitted

@ ELSEIF may be spelled ELSE IF
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Named IF statements

@ TF can be preceded by <name>:

— Then ENDIF must be followed
by <name> !

— Any ELSEIF/THEN and ELSE
may be

nsol: IF (n < 10) THEN
PRINT *, n, ' is smaller than 10'
ELSE IF (n >= 10.and.n < 50) THEN nsol
PRINT *, n, ' is between 10 and 50'
ELSE IF (n < 100) THEN =nsol
PRINT *, n, ' is between 50 and 100'
ELSE IF (.not.lvar) THEN nsol
PRINT *, 'error'
ELSE
CALL COMP_SOL(n)
END IF nsol

23 24.03.15 Operators and Control Constructs
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@ Pitfalls:

® <name> does not match
and not distinct

@ How/Why to use?

® Great help for checking
and clarity

® At least all long IF blocks
should be named

® |f not too many nested IF
blocks, the <name> can
be omitted at the end for
ELSEIF/THEN and

ELSE line

g}xgis ; Steinbuch Centre for Computing



Basic loops

@ Basic syntax

24

[loop name:] DO [loop controll

block of statements
ENDDO [loop name]

loop name: optional
loop control: optional

— without loop control, it loops
indefinitely

ENDDO may be spelled:
END DO

24.03.15 Operators and Control Constructs
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A

@ Examples:

myloop: do
write(*,*) 'Hello World!'
end do myloop

® How/Why to use?
® Give distinct loop names

® Great help for checking and
clarity

®= At least all long DO loops
should be named

@ Steinbuch Centre for Computing



Indexed loop control (1) A\‘(IT
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@ Syntax:

DO <int_var> = <1_b>, <u_b>

@ Lower bound <1_b> } - _
any integer expression
Upper bound <u_b> y J P
@ loop control variable <int_var>

— starts at the lower bound

@ Mechanism: do i =1, 10
® Top: <int_var> exceeds upper bound write(*,*) i
— loop exits 1]
® Toop body is executed end do L
. <i .
<int_var> is incremented by one Frror: Variable 'i'
® | oop starts again from top at (1)
cannot be redefined
inside loop beginning
@ Loop control variables must not be changed within loop! at (2)

25 24.03.15 Operators and Control Constructs @ Steinbuch Centre for Computing
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Indexed loop control (2)

@ Example 1:

do i =1,3
write(*,*) B5xi-2
end do

— Prints 3 lines containing 3, 8, 13

@ Example 2:

do i = 3,1
write(*,*) Bbxi-2
end do

— Does nothing!
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Loops: Using an increment (1) A\‘(IT
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® General form: @ Examples1:
DO <int _var> = <1 _b>, <u_b>, <inc> do i = 1,20,7
write(*,*) 5*i-2
o end do
@ <int_var> is incremented by

<inc>, not by one
@ Until it exceeds <u_b> (if <inc> is

— Prints 3 lines containing 3, 38, 73

ositive
P ) @ Example 2:
or
_ - _ do i = 20,1,7
is smaller than <u_b> (if <inc> is write (*,%) 5%i-2
negative) end do

) ) . — Does nothing!
® sign of <inc> — direction J

@ <inc> must not be zero!
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Loops: Using an increment (2) A\‘(IT
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O @ Examples 3:
DO <int_var> = <1_b>, <u_b>, <inc> do i = 20,1,-7
write(*,*x) b5*i-2
end do
|
— Prints 3 lines containing 98, 63, 28
|
@ Example 4:
do i = 1,20,-7
write(*,*) B5xi-2
end do
a — Does nothing!
|

28 24.03.15 Operators and Control Constructs @AC‘Q Steinbuch Centre for Computing
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Loop Control Statements

EXIT leaves normally the innermost loop
CYCLE skips to the next iteration

@
0
@ EXIT/CYCLE <name> is for the loop named <name>
@

Example:

FirstMatch = 0O
outer: DO i1 = 1,cols
IF (state(i) /= 1) CYCLE
inner: DO j = 1,rows
IF (table(i,j) == limit) THEN
FirstMatch = 1
EXIT outer
ENDIF
ENDDO inner
ENDDO outer
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WHILE Loop Control &‘(IT
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® L[oop control has the following form: ® Slower than loops
with known control
HILE (logical :
W (logical expr) variables
: L a :
® |ogical expression is evaluated for Example:
each cycle i= 1
@ |Loop exits as soon as it becomes DO WHILE (a(i) <= 0.0)
.FALSE. i=1+1
. : _ ENDDO
® The following are equivalent: first_positive = i

DO WHILE (logical expr)

and

DO
IF (.NOT.(logical expr)) EXIT
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Multi-way IFs AT
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IF (expr == vall) THEN

ELéﬁiF (expr >= val2 .AND. expr <= val3) THEN
ELéﬁiF (expr == val4) THEN

ELSE.

ENDIF

@ Very commonly, <expr> is always the same
and
all of the <val <> are constant expressions

— But there is another way of coding it

31 24.03.15 Operators and Control Constructs écv 5 ; Steinbuch Centre for Computing



CASE construct (1)
® CASE clauses are statements

@ The values must be initialization
expressions
" Allowed:
INTEGER, CHARACTER,
LOGICAL

® Example 2:

integer :: a,b
select case (a>b)
case (.true.)

write(*x,x) 'a > b'
case (.false.)
write(*x,x) 'a <= b'

end select

32 24.03.15 Operators and Control Constructs
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® Example 1:

integer :: 1

SELECT CASE (i)
CASE (1:3)
write (*,x*)
CASE (4:)
write (*,x*)
CASE DEFAULT
write (*,x*)
END SELECT

'integer =', i
'integer above 3'

'integer below 1'

& Y Steinbuch Centre for Computing
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CASE construct (2) &‘(IT
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Single line per ,case” possible: | case (18); <statement>

Ranges for INTEGER and CHARACTER possible

CASE (-42:42) ! -42 to 42 inclusive
CASE (42:) | 42 or above
CASE (:42) I up to and including 42

— ranges must not overlap! — error.

SELECT CASE may be spelled SELECTCASE

END SELECT may be spelled ENDSELECT

CASE DEFAULT must not be spelled CASEDEFAULT!
SELECT and CASE may be named (like IF)

No error:

® Empty ranges (they don‘t overlap with anything)
® DEFAULT unreachable

24.03.15 Operators and Control Constructs S&\C*Is ; Steinbuch Centre for Computing




WHERE statement (1)

@ For selective array assignment
® Basic Syntax

WHERE (logical expr 1)
array = value

ELSEWHERE (logical expr 2)

ELSEWHERE

END WHERE

34 24.03.15 Operators and Control Constructs
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@ Example:

INTEGER :: A(12)
A=(1,2,3,4,5,6,7,8,9,10,11,12 /)
WRITE (*,%*) A

WHERE (A == A/2%2) A=0
WRITE(*,*) A

1 2 3 4 65 6 T 8 9 10 11 12
1 O 3 0 b O 7 O 9 0 11 0

& Y Steinbuch Centre for Computing




WHERE statement (2) &‘(IT
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® Example 2: take logarithm of the elements of rank-2 array

DO i = 1, dimA
DO j = 1, dimB
IF (array(i,j) > 0.) THEN
logval(i,j) = LOG(array(i,j))
ELSE
logval(i,j) = -1
ENDIF
ENDDO
ENDDO

— simplification via ,masked array assignment”

WHERE (array > 0.)
logval = LOG(array)
ELSEWHERE
logval = -1
END WHERE

24.03.15 Operators and Control Constructs S C ! Steinbuch Centre for Computing



FORALL Construct (1) &‘(IT
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@ Permits operations on element-by-element basis to
® Subset of an array
® By subscript index & logical conditions

FORALL (triple [,triplel [,mask])
var = val
END FORALL

<triple> = <initial>:<final>[:<inc>]

® Example:

array = 0.0

FORALL (i=1:3,j=1:3,i==j) 1 0 o
array(i,j) = 1.0 >0 1 0

END FORALL v 0 i
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FORALL Construct (2) &‘(IT
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® Significance to nested DO loops with IF block construct?

array = 0.0 array = 0.0
FORALL (i=1:3,j=1:3,i==j) DO i=1,3
array(i,j) = 1.0 — DO j=1,3
END FORALL IF (i == j) THEN
array(i,j) = 1.0
ENDIF
ENDDO
ENDDO

— statements in DO loops executed in a strict order

— statements in FORALL executed in any order (selected by processor)
— this freedom helps to optimize program for maximum speed
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FORALL Construct (3) &‘(IT
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Properties:
— each statement (— red, blue) is entirely completed before next one

FORALL (i=2:n-1, j=2:n-1)
d(i,j) = 0.25%x(c(i,j+1)+c(i,j-1)+ c(i+1,j)+c(i-1,j)-c(i,j))
c(i,j) = c(i,j)+eps*d(d,j)

END FORALL

Single-line FORALL statement

FORALL (triple [,triple] [,mask]) array=val

— Example:

FORALL (i=1:n, j=1:n, a(i,j) .ne. 0.0) b(i,j) = 1.0/a(i,j)

24.03.15 Operators and Control Constructs @AC‘Q Steinbuch Centre for Computing



Obsolete Fortran Features (1) QAT
® Do not use: Arithmetic IF statement

IF (x-y) 10, 20, 30
10 (code for negative case)

GOTO 100

20 (code for zero case)
GOTO 100

30 (code for positive case)

100 CONTINUE
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Obsolete Fortran Features (2) A\‘(IT
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® Do not use: Unconditional GOTO statement

IF (condition) GOTO 10

10 execution_statement

— redesign your code using named loops, branches
— excessive use of GOTO leads to ,spaghetti code”

® Do not use: older forms of DO loops, e.g. ,good” FORTRAN 77 code

DO 200 i = 1, 10
WRITE(*,*) i
200 CONTINUE
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El'hank you for your attentionﬂ
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