
Comparison of container

virtualization tools for

utilization of idle

supercomputer resources

Julia Dubenskaya, Stanislav Polyakov,
Minh Duc Nguyen, Elena Fedotova

Skobeltsyn Institute of Nuclear Physics, Moscow State
University

Motivation

• Supercomputer time is expensive

• Some of the supercomputer resources remain idle.
Reasons:

 policy

 jobs’ requirements

 a lack of jobs

• Problem: usually supercomputer is underloaded

• Purpose: increase the load on supercomputer
forcing the use of idle resources

Dubenskaya et al. DLC-2020, June 10, 2020 2/9

Idea

• Create an additional queue of low-priority jobs

• Load idle resources with these jobs

• Upon arrival of a regular job:
 interrupt the execution of low-priority jobs

 wait for the appearance of new idle nodes

 resume low-priority jobs there

• Low-priority jobs required characteristics:
 small, not resource-intensive

 not urgent

Dubenskaya et al. DLC-2020, June 10, 2020 3/9

Implementation

• Container virtualization: to isolate the process

• CRIU - Checkpoint/Restore In Userspace:
 creates a stateful checkpoint

 stops a running process

 the process can later be restored from the moment it
was interrupted

 restoring is possible on the same computational node or
on another

• Result: a low-priority job can be completed in
several stages

Dubenskaya et al. DLC-2020, June 10, 2020 4/9

Container virtualization tools comparison

• Goal:
 compare different container virtualization tools with

CRIU support

 choose one that is most suitable for our task

• Alternatives considered (virtualization tool + file
system):

 Docker + Ext4

 LXC + ZFS

Dubenskaya et al. DLC-2020, June 10, 2020 5/9

Testbed

• Computer, CPU with 2 cores:
 product: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

 capacity: 2401MHz

 width: 64 bits

• Computer, memory:
 size: 15 GiB

• Test job:
 100% CPU load

 about 1.5 GiB of memory

Dubenskaya et al. DLC-2020, June 10, 2020 6/9

Docker vs LXC. Timing

Dubenskaya et al. DLC-2020, June 10, 2020 7/9

Docker LXC

create/start
container

create
container

start
container

Time, sec 1.5 ± 2 14 ± 2 1.5 ± 2

Docker LXC

checkpoint

restore

checkpoint

restore

Time, sec 70 ± 3 62 ± 3 13 ± 2 5.5 ± 0.5

Container launch

Checkpoint and restore operations

Docker vs LXC. Final choice

• Unexpected LXC feature:
 the same container can be correctly restored from a

checkpoint only once

 Otherwise - error with the loss of the container state

• Our idea assumes a multiple checkpoint and
restore of the same container

• Conclusion:
 We have chosen Docker which stably and correctly

checkpoints/restores any container multiple times

Dubenskaya et al. DLC-2020, June 10, 2020 8/9

Applications of the results

• We implemented a prototype system using Docker
containers

• Testing of the prototype proved the reliability and
stability of the proposed approach

• Hope that the results obtained can be useful to
other researchers when choosing a container
virtualization tool for their needs

Dubenskaya et al. DLC-2020, June 10, 2020 9/9

Thank you for the attention!

Questions?

