Numerical methods and beam functions at NNLO and beyond

Philipp Müllender

TTK RWTH Aachen

In collaboration with

Michal Czakon, Tomoki Goda, Sebastian Sapeta

Young Scientists Forum, 17 June 2020

Outline

- 1. At hadron colliders, there are many interesting final states to observe. Among these, the production of colour-neutral final states has gotten much attention.
- 2. There are many methods to compute cross sections at NLO and NNLO. However, at N³LO the implementation of these methods is involved.
- I shall present our methods to compute beam function which have already been computed at NLO [Becher, Neubert '11], NNLO [Gehrmann, Lübbert, Yang '12, '14] and recently N³LO [Luo, Wang, Xu, Yang, Yang, Zhu '19, Ebert, Mistlberger, Vita, '20]
- 4. The beam function was the last ingredient needed to implement the q_T slicing method at N³LO.

The q_T slicing method [Catani, Grazzini '07, '15]

$$p + p \rightarrow F(q_T) + X$$

$$\begin{split} \sigma_{N^{m}LO}^{F} &= \int_{0}^{q_{T,cut}} dq_{T} \frac{d\sigma_{N^{m}LO}^{F}}{dq_{T}} + \int_{q_{T,cut}}^{\infty} dq_{T} \frac{d\sigma_{N^{m}LO}^{F}}{dq_{T}} \\ &= \int_{0}^{q_{T,cut}} dq_{T} \frac{d\sigma_{N^{m}LO}^{F}}{dq_{T}} + \int_{q_{T,cut}}^{\infty} dq_{T} \frac{d\sigma_{N^{m-1}LO}^{F+jet}}{dq_{T}} \\ \\ &\text{enough to know in } \int & \uparrow & \text{known} \\ \text{small-}q_{T} \text{ approximation} & & \text{known} \end{split}$$

Factorization

where $F = H, Z, W, ZZ, WW, t\bar{t}, ...$ If not colourless the final state must be at least massive

$$\begin{split} q^2 \sim q_T^2 \gg \Lambda_{\rm QCD} & \mbox{collinear factorization} \\ & \frac{d\sigma_{\rm F}}{d\varPhi} = \phi_1 \otimes \phi_2 \otimes {\rm C} + \mathcal{O}\left(\frac{1}{q^2}\right) \\ q^2 \gg q_T^2 > \Lambda_{\rm QCD} & \mbox{small-} q_T \mbox{ factorization} \\ & \frac{d\sigma_{\rm F}}{d\varPhi} = \mathcal{B}_1 \otimes \mathcal{B}_2 \otimes \mathcal{H} \otimes \mathcal{S} + \mathcal{O}\left(\frac{q_T^2}{q^2}\right) \end{split}$$

Philipp Müllender (TTK RWTH Aachen) Numerical methods and beam functions at NNLO and beyond

All those functions

To get the cross section at $\rm N^mLO,$ we need to know all those functions at $\rm N^mLO$

$$\frac{\mathrm{d}\sigma_{\mathrm{F}}^{\mathrm{N}^{\mathrm{m}}\mathrm{LO}}}{\mathrm{d}\Phi} = \mathcal{B}_{1}^{\mathrm{N}^{\mathrm{m}}\mathrm{LO}} \otimes \mathcal{B}_{2}^{\mathrm{N}^{\mathrm{m}}\mathrm{LO}} \otimes \mathcal{H}^{\mathrm{N}^{\mathrm{m}}\mathrm{LO}} \otimes \mathcal{S}^{\mathrm{N}^{\mathrm{m}}\mathrm{LO}}$$

- ${\cal B}$ beam function radiation collinear to the beam, process-independent, known up to N³LO
- $\mathcal H$ hard function virtual corrections, process-dependent
- \mathcal{S} soft function soft, real radiation, process-dependent

Today, I will focus on \mathcal{B} .

Renormalization

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & &$$

Small- q_T factorization in SCET

Gluons' momenta in light-cone coordinates

$$k_i^{\mu} = \left(k_i^+,k_i^-, \textbf{\textit{k}}_i^{\perp}\right) \qquad {\rm where} \qquad k^{\pm} = k^0 \pm k^3$$

Expansion parameter

$$\lambda = \sqrt{\frac{q_T^2}{q^2}} \ll 1$$

Phase space regions

Soft Collinear Effective Theory (SCET)

 $\mathrm{SCET}\simeq\mathrm{QCD}\Big|_{\mathrm{IR\ limit}}$

Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$\phi(\mathbf{x}) = \phi_{\mathrm{c}}(\mathbf{x}) + \phi_{\bar{\mathrm{c}}}(\mathbf{x}) + \phi_{\mathrm{s}}(\mathbf{x})$$

The new fields decouple in the Lagrangian

$$\mathcal{L}_{\rm SCET} = \mathcal{L}_{\rm c} + \mathcal{L}_{\bar{\rm c}} + \mathcal{L}_{\rm s}$$

At leading power, the decoupled Lagrangians are copies of the QCD lagrangian. The separation of fields in the Lagrangian into collinear, anti-collinear and soft sectors, facilitates proofs of factorization theorems.

Rapidity divergences and analytic regulator

Modification of the measure [Becher, Bell '12]

$$\int d^{d}k \, \delta^{+}(k^{2}) \rightarrow \int d^{d}k \left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta^{+}(k^{2})$$

The regulator is necessary at intermediate steps of the calculation.

Rapidity divergences and analytic regulator

Rapidity divergences do not appear in QCD, hence, the complete SCET result has to stay finite in the limit $\alpha \rightarrow 0$.

They appear in real emission diagrams due to the expansion in different momentum regions (collinear, soft, ..).

$$s_{i_1i_2..i_k} = (p_{i_1} + p_{i_2} + .. + p_{i_k})^2$$

If we look at a phase space region in which p_{i_1} and p_{i_2} are collinear while all other momenta are anti-collinear, one expands

$$s_{i_1i_2..i_k} = (p_{i_1}^- + p_{i_2}^-)(p_{i_3}^+ + .. + p_{i_k}^+) + \mathcal{O}(\lambda^2)$$

It can be shown that divergences arising from this expansion, can be regulated by analytic regularization [Becher, Bell '11].

10/19

NNLO and $N^{3}LO$ beam function

The beam function

Represents corrections coming from emissions of real, collinear gluons, whose transverse momenta sum up to a fixed value q_T and whose longitudinal component along p sums up to 1-z

 $\times\,\delta\left(q_{T}-|\sum_{i}k_{i\perp}|\right)\prod_{i}\delta^{+}(k_{i}^{2})\,\delta\left(\bar{n}\cdot\sum k_{i}-\left(1-z\right)\bar{n}\cdot p\right)$

12/19

$$p = \frac{\bar{n} \cdot p}{2}n = \frac{p_{-}}{2}n$$
$$n^{2} = \bar{n}^{2} = 0$$
$$n \cdot \bar{n} = 2$$

Philipp Müllender (TTK RWTH Aachen)Numerical methods and beam functions at NNLO and beyond

N³LO propagators

The way to go

The beam function

$$\mathrm{B}_{\mathrm{bare}}(\mathrm{z},\mathrm{q}_{\mathrm{T}}) = \sum_{\mathrm{i}} \mathcal{I}_{\mathrm{i}} \, ,$$

can be calculated if each integral is represented as

$$\mathcal{I}_i = \sum_{j \in \text{sectors}} \int_0^1 \frac{\mathrm{d}x_1}{x_1^{1+a_1\varepsilon}} \frac{\mathrm{d}x_2}{x_2^{1+a_2\varepsilon}} \frac{\mathrm{d}x_3}{x_3^{1+a_3\varepsilon}} \frac{\mathrm{d}x_4}{x_4^{1+a_4\varepsilon}} \,\mathrm{d}x_5 \cdots \mathrm{d}x_9 \, \mathcal{W}_j\big(x_1, x_2, \dots, x_9\big) \,.$$

 $\mathcal{W}_j(x_1, x_2, \dots, x_9)$ has to be finite if $x_1, \dots, x_4 \to 0$. Then we can use

$$\frac{1}{x_i^{1+a_i\epsilon}} = -\frac{1}{a_i\epsilon}\delta(x_i) + \sum_{n=0}^{\infty}\frac{(-a_i\epsilon)^n}{n!} \left[\frac{\mathsf{log}^n(x_i)}{x_i}\right]_+$$

In order to further simplify the computation, we substitute the delta $\delta(\mathbf{k}_{\perp})$ for $e^{-\mathbf{k}_{\perp}^2}$ and rescale the integral correspondingly.

٠

N³LO propagators

The first problem:

It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

. . . .

Example

$$\mathbf{n} = [1, 0, 0, 0, 1] \qquad \bar{\mathbf{n}} = [1, 0, 0, 0, -1] \quad \mathbf{l}_1 = \left[\frac{\mathbf{l}_{1-}^2 + \mathbf{l}_{1T}^2}{2\mathbf{l}_{1-}}, 0, 0, 0, 0, \frac{\mathbf{l}_{1-}^2 - \mathbf{l}_{1T}^2}{2\mathbf{l}_{1-}}\right]$$

$$\mathbf{l}_3 = \left[\frac{\mathbf{l}_{3-}^2 + \mathbf{l}_{3\mathrm{T}}^2}{2\,\mathbf{l}_{3-}}, \; 0, \; \mathbf{l}_{3\mathrm{T}} \sin\chi_1, \; \mathbf{l}_{3\mathrm{T}} \cos\chi_1, \; \frac{\mathbf{l}_{3-}^2 - \mathbf{l}_{3\mathrm{T}}^2}{2\,\mathbf{l}_{3-}}\right]$$

$$\mathbf{l}_{2} = \left[\frac{\mathbf{l}_{2-}^{2} + \mathbf{l}_{2+}^{2}}{2\,\mathbf{l}_{2-}^{2}}, \ \mathbf{l}_{2\mathrm{T}}\sin\phi_{1}\sin\phi_{2}, \ \mathbf{l}_{2\mathrm{T}}\cos\phi_{2}\sin\phi_{1}, \ \mathbf{l}_{2\mathrm{T}}\cos\phi_{1}, \ \frac{\mathbf{l}_{2-}^{2} - \mathbf{l}_{2+}^{2}}{2\,\mathbf{l}_{2-}}\right]$$

 $\bar{n} \cdot l_1 = l_{1-}$ $\bar{n} \cdot l_2 = l_{2-}$ $\bar{n} \cdot l_3 = l_{3-}$

$$\mathbf{l}_1 \cdot \mathbf{l}_2 = \frac{\mathbf{l}_{1T}^2 \mathbf{l}_{2-}}{2 \mathbf{l}_{1-}} + \frac{\mathbf{l}_{2T}^2 \mathbf{l}_{1-}}{2 \mathbf{l}_{2-}} - \mathbf{l}_{1T} \mathbf{l}_{2T} \cos \phi_1 \quad \Rightarrow \quad \phi_1 = 0 \ \& \ \frac{\mathbf{l}_{1T}}{\mathbf{l}_{1-}} = \frac{\mathbf{l}_{2T}}{\mathbf{l}_{2-}}$$

$$\mathbf{l}_2 \cdot \mathbf{l}_3 = \frac{\mathbf{l}_{2T}^2 \mathbf{l}_{3-}}{2 \, \mathbf{l}_{2-}} + \frac{\mathbf{l}_{3T}^2 \mathbf{l}_{2-}}{2 \, \mathbf{l}_{3-}} - \mathbf{l}_{2T} \mathbf{l}_{3T} \cos \chi_1 \cos \phi_1 - \mathbf{l}_{2T} \mathbf{l}_{3T} \cos \phi_2 \sin \chi_1 \sin \phi_1$$

Step 1: selector functions

7 triple collinear	12 double	12 double collinear	
$(l_1 \cdot l_2)(n \cdot l_1)(n \cdot l_2)$	$(\mathbf{n} \cdot \mathbf{l}_1) (\mathbf{\bar{n}} \cdot \mathbf{l}_2)$	$(l_1 \cdot l_3) (n \cdot l_2)$	
$\left(l_{1}\cdot l_{3} ight) \left(n\cdot l_{1} ight) \left(n\cdot l_{3} ight)$	$(n \cdot l_1) (\bar{n} \cdot l_3)$	$\left(l_{2}\cdot l_{3} ight) \left(n\cdot l_{1} ight)$	
$\left(l_{2}\cdot l_{3} ight) \left(n\cdot l_{2} ight) \left(n\cdot l_{3} ight)$	$(\mathbf{n}\cdot\mathbf{l}_2)(\mathbf{ar{n}}\cdot\mathbf{l}_3)$	$\left(l_{1}\cdot l_{2} ight) \left(n\cdot l_{3} ight)$	
$\left(\mathrm{l}_{1} \cdot \mathrm{l}_{2} ight) \left(\mathrm{ar{n}} \cdot \mathrm{l}_{1} ight) \left(\mathrm{ar{n}} \cdot \mathrm{l}_{2} ight)$	$\left(ar{\mathrm{n}} \cdot \mathrm{l}_1 ight) \left(\mathrm{n} \cdot \mathrm{l}_2 ight)$	$\left(l_{1}\cdot l_{3} ight) \left(ar{\mathrm{n}}\cdot l_{2} ight)$	
$\left(\mathrm{l}_{1}\cdot \mathrm{l}_{3} ight) \left(\mathrm{ar{n}}\cdot \mathrm{l}_{1} ight) \left(\mathrm{ar{n}}\cdot \mathrm{l}_{3} ight)$	$\left(ar{\mathrm{n}} \cdot \mathrm{l}_1 ight) \left(\mathrm{n} \cdot \mathrm{l}_3 ight)$	$\left(l_{2}\cdot l_{3} ight) \left(ar{\mathrm{n}}\cdot l_{1} ight)$	
$\left(l_{2}\cdot l_{3} ight) \left(ar{\mathrm{n}}\cdot l_{2} ight) \left(ar{\mathrm{n}}\cdot l_{3} ight)$	$\left(ar{\mathrm{n}} \cdot \mathrm{l}_2 ight) \left(\mathrm{n} \cdot \mathrm{l}_3 ight)$	$\left(\mathrm{l}_{1} \cdot \mathrm{l}_{2} ight) \left(\mathrm{ar{n}} \cdot \mathrm{l}_{3} ight)$	
$\left(l_{1}\cdot l_{2} ight) \left(l_{1}\cdot l_{3} ight) \left(l_{2}\cdot l_{3} ight)$			
1	$d_{1,2;1} = (l_1 \cdot l_2) (i_1 \cdot i_2)$	$\left[\mathbf{\bar{n}}\cdot \mathbf{l}_{1} ight) \left(\mathbf{\bar{n}}\cdot \mathbf{l}_{2} ight) ,$	
$S_{1,2;2} = \frac{1}{d_{1,2;1}\mathcal{D}},$	$\mathcal{D} = \sum_{i \neq j} \frac{1}{d_{i,j;k}} +$	$\sum_{i,j,k,l} \frac{1}{d_{i,j;k,l}},$	
1,j,k $1,j,k,1$ 1			
$S_{1,2;2}=rac{\left(\mathbf{l}_{1}\cdot\mathbf{l}_{2} ight) \left(\mathbf{ar{n}}\cdot\mathbf{l}_{2} ight) }{\left(\mathbf{l}_{1}\cdot\mathbf{l}_{2} ight) \left(\mathbf{ar{n}}\cdot\mathbf{l}_{1} ight) },$			
$1 + \frac{(l_1 \cdot l_3)(\bar{n} \cdot l_3)}{(l_1 \cdot l_3)} + \frac{(l_1 \cdot l_3)}{(l_1 \cdot l_3)} + \cdots$			

Philipp Müllender (TTK RWTH Aachen) Numerical methods and beam functions at NNLO and beyond

Step 2: nonlinear transformations

 l_1

Let's focus on the sector $(l_1 \cdot l_2)(\bar{n} \cdot l_1)(\bar{n} \cdot l_2)$. All other singularities are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following propagators:

Step 2: nonlinear transformations

The nonlinear transformation

$$\zeta = \frac{1}{2} \frac{\left(l_{1T}l_{2-} - l_{1-}l_{2T}\right)^2 \left(1 + \cos \phi_1\right)}{l_{1T}^2 l_{2-}^2 + l_{1-}^2 l_{2T}^2 - 2l_{1-}l_{2-}l_{1T}l_{2T} \cos \phi_1}$$

 turns

$$\mathbf{l}_{1} \cdot \mathbf{l}_{2} = \frac{\mathbf{l}_{1\mathrm{T}}^{2}\mathbf{l}_{2-}}{2\mathbf{l}_{1-}} + \frac{\mathbf{l}_{2\mathrm{T}}^{2}\mathbf{l}_{1-}}{2\mathbf{l}_{2-}} - \mathbf{l}_{1\mathrm{T}}\mathbf{l}_{2\mathrm{T}}\cos\phi_{1}$$

into

$$l_1 \cdot l_2 = \frac{(l_{1T}^2 l_{2-}^2 - l_{1-}^2 l_{2T}^2)^2}{2 l_{1-} l_{2-} (l_{1T}^2 l_{2-}^2 + l_{1-}^2 l_{2T}^2 - 2 l_{1-} l_{2-} l_{1T} l_{2T} (1 - 2\zeta))}$$

NNLO beam function

Known analytically [Gehrmann, Lübbert, Yang '12, '14]. We checked that our method reproduces that result

Furthermore, we are able to get higher orders in the expansion parameters at the cost of more computing time

19/19