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Top and precision physics

From PDG:

∆Gµ/Gµ = 5 · 10−7; ∆MZ/MZ = 2 · 10−5;

∆α(MZ )/α(MZ ) =

{
1 · 10−4(Davier et al.; PDG)
3.3 · 10−4(Burkhardt, Pietrzyk)

MW can be predicted from the above with high precision, provided
MH and MT (entering radiative corrections) are also known
(and depending on how aggressive is the error on α(MZ )).
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Top and vacuum stability

Degrassi et al. 2012
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With current value of Mt and MH the vacuum is metastable.
No indication of new physics up to the Plank scale from this.
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Top and vacuum stability

Degrassi et al. 2012
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Mt = 173.1 ± 0.6 GeV HgrayL
Α3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.3 GeV

ΑsHMZL = 0.1163

ΑsHMZL = 0.1205

Mt = 174.9 GeV

The quartic coupling λH becomes tiny at very high field values,
and may turn negative, leading to vacuum instability.
Mt as low as 171 GeV leads to λH → 0 at the Plank scale.
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How to measure the top mass

I At the moment the top mass is measured at Hadron Colliders.

I An e+e− collider spanning the tt̄ threshold can do much
better, but we are far from it.

Measurements are classified as

I Direct measurements: measurements based upon the
reconstruction of the full production event, that use as mass
observable the reconstruction of its decay products.

I Measurements based upon cross section or differential
distributions, decay product distributions insensitive to
production dynamics, mass of boosted top jets, etc.
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Measurements
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WGtopLHCLHC comb. (Sep 2013) 7 TeV  [1] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [2] 0.67)± 0.76 (0.36 ±173.34 

ATLAS, l+jets 7 TeV  [3] 1.02)± 1.27 (0.75 ±172.33 

ATLAS, dilepton 7 TeV  [3] 1.30)± 1.41 (0.54 ±173.79 

ATLAS, all jets 7 TeV  [4] 1.2)± 1.8 (1.4 ±175.1 

ATLAS, single top 8 TeV  [5] 2.0)± 2.1 (0.7 ±172.2 

ATLAS, dilepton 8 TeV  [6] 0.74)± 0.85 (0.41 ±172.99 

ATLAS, all jets 8 TeV  [7] 1.01)± 1.15 (0.55 ±173.72 

ATLAS, l+jets 8 TeV  [8] 0.82)± 0.91 (0.39 ±172.08 
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Measurements
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High Luminosity Projections
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General problem

I In all measurements, the pole mass is extracted comparing
measured top-mass sensitive observables to computed ones.

I As the required precision increases, one becomes sensitive to
effects that are not computed with sufficient accuracy

Among the most sticky points:

I Transition from soft to hadronization stage in MC (only from
models!).

I Soft radiation in MC (only OK in the collinear limit ...)

All these points easily lead to ambiguities that affect the extracted
mass by an amount at least of order of a hadronic scale. When
measurements approach the 500 MeV accuracy, they become
worrysome.
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Theoretical proposals

I Butenschoen,Dehnadi,Hoang,Mateu,Preisser,Stewart,2016 Use
boosted top jet mass + SCET.

I Agashe,Franceschini,Kim,Schulze,2016: peak of b-jet energy
insensitive to production dynamics.

I Kawabata,Shimizu,Sumino,Yokoya,2014: shape of lepton
spectrum. Insensitive to production dynamics and claimed to
have reduced sensitivity to strong interaction effects.

I Frixione, Mitov: Selected lepton observables.

I Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos ,2013;
Bayu etal: Mt from tt̄j kinematics.

I tt̄ threshold in γγ spectrum (needs very high luminosity),
Kawabata,Yokoya,2015
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A traditional way to assess uncertainties is to change parameters
or/and implementations of the calculation.

As an example: Ferrario Ravasio,Jezo,Oleari,P.N,2017-2019
performed a theoretical study of top mass determinations using
direct measurements:

I Focussed upon the invariant mass of the reconstructed
W − B−jet system.

I Found large uncertainties when experimental uncertainties are
applied to the invariant mass peak

I Found small uncertainties if the position of the peak was
measured with a perfect detector.

11 / 35
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Consider the groups
of squares (our best
generator) at fixed R.
They span a range
not larger than 250
MeV. This means
that if you had a
perfect detector, the
intrinsic theoretical
error estimate would
be ±125 MeV.
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However, the doubt remains: what if our models are all biased, in a
way that we fail to see?

In order to gain more insight into the form of the power suppressed
corrections to top-mass sensitive observables, we have study the
top mass measurement in a framework where power suppressed
effects can be computed without ambiguity, i.e. the so called
large-b0 approximation.
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Linear Power Corrections from Renormalons

Ferrario Ravasio, Oleari, P.N.2019
We consider a simplified production framework W ∗ →Wtb̄:

W ∗

W

b

b̄

(i.e. no incoming hadrons). However:

I The b is taken massless, the W is taken stable, but the top is
taken unstable, with a finite width.

I We can examine any infrared safe observable, no matter how
complex.
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Diagrams up to leading Nf one gluon correction:
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All-order result

Introducing the notation

I Φb, phase space for Wbb̄;

I Φg∗ , phase space for Wbb̄g∗, where g∗ is a massive gluon
with mass k2,

I Φqq̄, phase space for Wbb̄qq̄, with dΦqq̄ = dk2

2π dΦg∗dΦdec

the all-order result can be expressed in terms of

I σb(Φb), the differential cross section for the Born process;

I σv (k2,Φb), the virtual correction to the Born process due to
the exchange of a gluon of mass k ;

I The real cross section σg∗(k2,Φg∗), obtained by adding one
massive gluon to the Born final state;

I The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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All-order result

Consider a (IR safe) final state observable O. Define:

N(0) =

[∫
dΦb σb

]−1

, 〈O〉b = N(0)

∫
dΦb σb(Φb)O(Φb) ,

Ṽ
(
k2
)

= N(0)

∫
dΦb σ

(1)
v (k2,Φb)

[
O(Φb)− 〈O〉b

]
,

R̃
(
k2
)

= N(0)

∫
dΦg∗ σ

(1)
g∗ (k2,Φg∗)

[
O(Φg∗)− 〈O〉b

]
,

∆̃
(
k2
)

=
1

2

3

αSTF

k2 N(0)

∫
dΦqq̄)σ

(2)
qq̄ (Φqq̄)× [O(Φqq̄)− O(Φg∗)]

〈O〉b + Ṽ
(
k2
)

+ R̃
(
k2
)

is the average value of O in a theory with
a massive gluon with mass k2, accurate to order αS .

Notice: Ṽ
(
k2
)

+ R̃
(
k2
)

has a finite limit for k2 → 0, while each
contribution is log divergent.
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defining T̃
(
k2
)

= Ṽ
(
k2
)

+ R̃
(
k2
)

+ ∆̃
(
k2
)

our final result is

〈O〉 = 〈O〉b−
3π

αSTF

∫ ∞

0

dk

π

d

dk

[
T̃
(
k2
)]

Im
{

log
[
1 + Π

(
k2, µ2

)
− Πct

]}
,

where

Π
(
k2, µ2

)
− Πct = αSb0

(
log

k2

µ2
=

5

3
− iπ

)
, b0 = −4NFTF

12π

So

Im
{

log
[
1 + Π

(
k2, µ̃2

)
− Πct

]}
= −atan

(
αSπb0

1 + αSb0log
k2

µ̃2

)

that essentially exhibits the same Landau pole discussed earlier.
If we thus have:

T̃
(
k2
)

= a + b k +O(k2) (1)

we have a linear renormalon in our result.
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Comments

I In order to get our results, we need lim
k2→∞

T̃ (k2) = 0 .

This happens if we use the Pole Mass Scheme for mt .
I The need to include the ∆ term has a long story:

I Seymour,P.N. 1995, I.R. renormalons in e+e− event shapes.
I Dokshitzer,Lucenti,Marchesini,Salam, 1997-1998 Milan factor

I We compute T (k2) numerically. The k2 → 0 limit implies the
cancellation of two large logs in V and R. However, the
precise value at k2 = 0 can also be computed directly by
standard means (which we do).
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Total cross section
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No linear renormalon in MS scheme!

20 / 35



Reconstructed top mass
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Reconstructed top mass
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Leptonic Observables

Choose as mass sensitive observable the average EW .
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For k � Γ, the slope is roughly 0.45. The MS conversion would
add −0.067.
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Leptonic Observables

It seems that physical linear renormalons are present also in
leptonic observables.
But, for k � Γ, the slope of T (k) decreases, approaching 0.067!
So, the top finite width screens the linear renormalons!

This an exact statement!
It can be proven analytically.
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Linear Power Corrections from Renormalons

We find:

I The total cross section (in the simplified model!) does not
have them. However, if cuts are present (even if only on the
lepton!) they are there.

I Jets have large linear power corrections with coefficients of
order 1/R. These have some sort of universality, and may be
controlled by calibration. However, power corrections with no
1/R enhancement are also there, and are not universal.
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Linear Power Corrections from Renormalons

I Leptonic observables have linear power corrections in the
narrow width limit. These are seen to be absent for
distributions defined in the top rest frame, consistently with
the B decay example.

I In general, the top finite width screens the linear power
corrections due to top emissions. Thus, for observables not
involving jets, like the leptonic observables, we see that the
linear corrections disappear for finite with.

In theory, one may exploited this fact to perform top mass
measurements free of linear power corrections...
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Putting things in perspective

I We have some certainty about the presence/absence of power
corrections when we have an OPE:
I e+e− → hadrons: power corrections like 1/Q4, from the

dimensionality of G 2.
I DIS: twist expansion, twist 4 versus twist 2, 1/Q2 corrections
I B physics: absence of linear power corrections to semileptonic

decays

In hadronic collisions: we have no OPE! This is a general fact, that
affects all hadron collider physics (and thus also the top mass
measurement).
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Beneke and Braun, arXiv:hep-ph/9506452

Abstract:

Their calculation: leading Nf one gluon correction:
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Putting things in perspective

Large nf calculations provided some insight for non-perturbative
corrections:

I Back in 1995 it was shown by Beneke and Braun that previous
claims on the presence of linear power corrections in Drell-Yan
production were not justified.

I We have found it useful to clarify some aspect of top mass
measurement in hadronic collisions.

I But we need more. We need some insight to be applied also
to MC models.

I Do we have intuitive arguments to support or dismiss the
presence of linear renormalons, that we can verify using the
large nF calculations?
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As an example, look at an intuitive argument to justify the absence
of linear power corrections to the leptonic distribution in the decay
of a heavy quark:

I A b quark in a B meson undergoes Fermi motion, i.e. it has
momentum of order Λ. But its kinetic energy is of order
Λ2/mb, because it is non-relativistic. So, no linear power
corrections there.

I The decay can take place in a time fraction when the b is in a
virtual state associated with the emission of a soft gluon.

The decay product are boosted with velocity
v = k/mb, where k is the soft gluon momen-
tum. The corresponding change in the lepton
momentum is δpl ≈ vp cos θ. But this effect
linear in v vanish under azimuthal average.

As a result, the semileptonic spectrum has no linear power
corrections if expressed in terms of a short distance mass
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Putting things in perspective

Another such argument, not related to quark mass measurement
goes as follows:

In Z production at large trasverse momentum the soft radiation
pattern is not azimuthally symmetric. If a soft gluon effects can be
mimiked by giving the gluon a small mass, we expect that the Z pt
spectrum should be affected by linear power corrections.

Recently, together with Ferrario-Ravasio,Limatola, we have
examined another such argument.
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Power corrections to the Z pt spectrum

We have considered the process qγ → Z + j :

This process has also a soft radiation pattern that may hint to the
presence of linear renormalons.
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We compute all its large-nf corrections:

Now the are complications with the handling of collinear
factorization and the like, but it can be carried out to the end.
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The resulting plot for the Z cross section with a transverse
momentum cut of 20 GeV:
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showing no clear evidence of linear effects.
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Perspectives

I Mass measurements at hadron collider pose some challenging
problems when one wants a precision comparable to a
hadronic scale.

I These problems are related to a lack of understanding of the
linear power corrections in hadronic collisions.

I There is one technique that can provide some hints, that is
the large b0 approximation.

I It seems that substantial theoretical progress is needed in this
direction in order to meet the precision that can be achieved
at the high-luminosity LHC.
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