

Der Wissenschaftsfonds.

Doktoratskolleg Particles and Interactions

A fast code for automated running and matching of couplings and masses in QCD

Christopher Lepenik in collaboration with André Hoang and Vicent Mateu

Mini Workshop on Quark Masses, KIT/Online, 2020-10-26

Preamble

- **REvolver** is a code written in C++ (+MathLink +Python) to
 - Run quark masses (RGE)
 - Automatic mass decoupling at thresholds
 - Convert quark masses between renormalization schemes
 - Using R-Evolution to resum large logs
 - Including light flavor effects
 - Run QCD coupling (RGE)
 - Automatic mass decoupling

Preamble

- **REvolver** is a code written in C++ (+MathLink +Python) to
 - Run quark masses (RGE)
 - Automatic mass decoupling at thresholds
 - Convert quark masses between renormalization schemes
 - Using R-Evolution to resum large logs
 - Including light flavor effects
 - Run QCD coupling (RGE)
 - Automatic mass decoupling
 - → To be released very soon (beta available on request)

Outline

- Motivation
 - Quark Mass Renormalization Schemes
 - Mass Schemes & Conversions: Massless lighter flavors
 - Mass Schemes & Conversions: Massive lighter flavors
- Operating Principle of REvolver
- Live Demo, Documentation Overview

Motivation

Quark Mass Schemes Massless lighter Flavors

Quark Mass Schemes

• Quark masses:

- Important parameters for SM predictions
- Confinement → Quark masses not physical observables
 - Parameter in QCD action

Quark Mass Schemes

• Quark masses:

- Important parameters for SM predictions
- Confinement → Quark masses not physical observables
 - Parameter in QCD action
- Quark self energy UV divergent → Needs to be absorbed into mass
 - Additional finite contributions renormalization scheme dependent
 - Can choose appropriate mass scheme depending on application.
 → Need precise methods to convert between schemes

Mass Scheme Examples

$$m_Q^{\text{pole}} - \overline{m}_Q = \overline{m}_Q \sum_{n=1}^{\infty} a_n^{\overline{\text{MS}}} \left(\frac{\alpha_s^{(n_\ell + 1)}(\overline{m}_Q)}{4\pi} \right)^n$$

 $[n_{\ell}\cdots \# \text{ massless quark flavors}]$

- $\overline{\mathrm{MS}}$ mass:
 - Running mass
 - Analogous to $\alpha_s(\mu)$: Absorbs only UV $1/\varepsilon$ poles from self-energy
 - Intrinsic physical scale: \overline{m}_Q
 - Standard scheme for most high energy applications
 - Only physically relevant for $\mu \gtrsim \overline{m}_Q$
 - Lower scales: Virtual heavy quark effects should be integrated out

Mass Scheme Examples

$$m_Q^{1S} - m_Q^{\text{pole}} = M_B \sum_{n=1}^{\infty} c_n \left(\frac{\alpha_s^{(n_\ell)}(M_B)}{4\pi}\right)^n$$

• 1S mass:

- Example of low scale mass
- Defined as half of heavy quarkonium spin triplet ground state mass
 → Observable, well defined mass scheme
- Intrinsic physical scale: Inverse Bohr radius $M_B \equiv C_F \alpha_s m_Q^{
 m pole}$

Mass Scheme Examples

$$m_Q^{1S} - m_Q^{\text{pole}} = M_B \sum_{n=1}^{\infty} c_n \left(\frac{\alpha_s^{(n_\ell)}(M_B)}{4\pi}\right)^n$$

• 1S mass:

- Example of low scale mass
- Defined as half of heavy quarkonium spin triplet ground state mass
 → Observable, well defined mass scheme
- Intrinsic physical scale: Inverse Bohr radius $M_B \equiv C_F \alpha_s m_Q^{
 m pole}$
- Many more well defined mass schemes: PS, RS, kinetic, jet, ...

$$m_Q^{\text{pole}} - m_Q^{\text{MSR}}(R) = R \sum_{n=1}^{\infty} a_n \left(\frac{\alpha_s^{(n_\ell)}(R)}{4\pi}\right)^n$$

- MSR mass:
 - Natural extension of $\overline{\rm MS}$ -mass for scales $\ll m_Q$
 - Defined directly from pole- $\overline{\mathrm{MS}}$ relation
 - Heavy DOF integrated out \rightarrow matching to $\overline{\mathrm{MS}}$
 - Intrinsic physical scale: Adjustable momentum cut-off R

 $\left[a_n = a_n^{\overline{\mathrm{MS}}}(n_h = 0)\right]$

- Inherits cleanness and good infrared properties from $\overline{\mathrm{MS}}$
 - Low-scale short-distance mass with direct relation to self-energy diagrams

- Inherits cleanness and good infrared properties from $\overline{\mathrm{MS}}$
 - Low-scale short-distance mass with direct relation to self-energy diagrams
- Lighter massive quarks can be incorporated systematically via matching → flavor-number dependent RG evolution → Later

- Possible interpretation of R:
 - MSR mass contains self-energy corrections only for scales larger than R

- Possible interpretation of R:
 - MSR mass contains self-energy corrections only for scales larger than R
- Pole mass: Formal limit $R \rightarrow 0$
 - Absorbs all contributions from quark self energy
 → sensitivity to non-perturbative regions
 - Suffers from $\mathcal{O}(\Lambda_{QCD})$ renormalon in QCD

$$m_Q^{\text{pole}} - m_Q^{\text{MSR}}(R) = R \sum_{n=1}^{\infty} a_n \left(\frac{\alpha_s^{(n_\ell)}(R)}{4\pi}\right)^n$$

Mass Scheme Conversion

- FOPT: Common scale μ and flavor number n_f have to be used for all $\alpha_s \rightarrow$ renormalon cancellation
 - Potentially large logs when converting mass schemes with different characteristic scales

Mass Scheme Conversion

- FOPT: Common scale μ and flavor number n_f have to be used for all $\alpha_s \rightarrow$ renormalon cancellation
 - Potentially large logs when converting mass schemes with different characteristic scales
- Solution: MSR / R-Evolution
 - Utilize freely adjustable intrinsic scale R
 - As intermediate step RG running between scales

R-Evolution

$$R\frac{\mathrm{d}m_Q^{\mathrm{MSR}}(R)}{\mathrm{d}R} = -R\gamma^R(\alpha_s(R)) = -R\sum_{n=0}^{\infty}\gamma_n^R\left(\frac{\alpha_s(R)}{4\pi}\right)^{n+1}$$

- RGE in IR scale R, relating MSR masses at different scales
 - Sums systematically renormalon series and large logs
 - Linear dependence on R

R-Evolution

• MS-scheme running: Large scale ($\overline{\mathrm{MS}}$) and Low scale (MSR)

R-Evolution

Fixed order vs. R-Evolution

Motivation

Quark Mass Schemes Massive lighter Flavors

- Many applications: Lighter massive quarks set massless
 - Needed in high precision calculations
- Corrections known for some schemes

- Many applications: Lighter massive quarks set massless
 - Needed in high precision calculations
- Corrections known for some schemes
- MSR scheme: Systematic treatment via flavor matching

- Scheme conversions & light massive flavors
 - Impact at higher orders
 - → Massive virtual quark loops act as IR-cutoff
 - → Change renormalon structure

- Scheme conversions & light massive flavors
 - Impact at higher orders
 - → Massive virtual quark loops act as IR-cutoff
 - → Change renormalon structure
- Consistency is crucial
 - when converting to/from pole mass
 - when converting between schemes

REvolver

Features

REvolver Features

- All implemented in **REvolver**:
 - MSR scheme as low-scale extension of $\overline{\mathrm{MS}} \rightarrow$ "MS-scheme"
 - R-Evolution
 - Flavor matching

REvolver Features

- All implemented in **REvolver**:
 - MSR scheme as low-scale extension of $\overline{\mathrm{MS}} \rightarrow$ "MS-scheme"
 - R-Evolution
 - Flavor matching
 - Mass conversion to/from MS scheme
 - using R-Evolution to resum logs
 - including light massive flavor contributions (if known)
 - Various schemes supported: MS, 1S, PS, RS, kinetic, pole, ...

REvolver Features

- All implemented in **REvolver**:
 - MSR scheme as low-scale extension of $\overline{\mathrm{MS}} \rightarrow$ "MS-scheme"
 - R-Evolution
 - Flavor matching
 - Mass conversion to/from MS scheme
 - using R-Evolution to resum logs
 - including light massive flavor contributions (if known)
 - Various schemes supported: MS, 1S, PS, RS, kinetic, pole, ...
- Highest available orders implemented for running/matching
 - 5 loop α_s , 5/4 loop $\overline{\mathrm{MS}}/\mathrm{MSR}, \dots$

REvolver

Operating Principle

 $n_f^{\text{tot}}, \alpha_s^{(n_\alpha)}(\mu_\alpha), \{m_i^{(n_{m_i})}(R_i)\}, \text{optional parameters}$

 $n_f^{\text{tot}}, \alpha_s^{(n_\alpha)}(\mu_\alpha), \{m_i^{(n_{m_i})}(R_i)\}, \text{optional parameters}$

Core

 $n_{f}^{\text{tot}}, n_{f}^{m=0}$ $m_{0}^{(n_{0})}(\overline{m}_{0}), m_{0}^{(n_{1})}(\overline{m}_{1}), \dots$ $m_{1}^{(n_{0})}(\overline{m}_{0}), m_{1}^{(n_{1})}(\overline{m}_{1}), \dots$

 $\alpha_s^{(n_0)}(\overline{m}_0), \, \alpha_s^{(n_1)}(\overline{m}_1), \dots$ optional parameters $\Lambda_{\text{QCD}}^{(n_0)}, \dots$ perturbative coefficients, ...

 $n_f^{\text{tot}}, \alpha_s^{(n_\alpha)}(\mu_\alpha), \{m_i^{(n_{m_i})}(R_i)\}, \text{optional parameters}$

Request quantity via member function

Core $n_f^{\text{tot}}, n_f^{m=0}$ $m_0^{(n_0)}(\overline{m}_0), m_0^{(n_1)}(\overline{m}_1), \ldots$ $m_1^{(n_0)}(\overline{m}_0), m_1^{(n_1)}(\overline{m}_1), \ldots$ $\alpha_{s}^{(n_{0})}(\overline{m}_{0}), \, \alpha_{s}^{(n_{1})}(\overline{m}_{1}), \, \dots$ optional parameters $\Lambda^{(n_0)}_{\text{OCD}}, \dots$ perturbative coefficients, ...

 $n_f^{\text{tot}}, \alpha_s^{(n_\alpha)}(\mu_\alpha), \{m_i^{(n_{m_i})}(R_i)\}, \text{optional parameters}$

Core

Request quantity via member function

perturbative coefficients, ...

 $\longrightarrow m_i^{(n_f)}(\mu)$

 $\blacktriangleright \alpha_s^{(n_f)}(\mu)$

 $\longrightarrow m_i^{\mathrm{PS}}(\mu_f)$

• Three ways to use the code:

- directly via C++ library

- Fast
- Most suitable for extensive, automated tasks
- Interaction with other C++ libraries

- via WSTP/MathLink in Mathematica
 - User friendly
 - Most suitable for interactive tasks
 - Interaction with Mathematica features

- via Python interface
 - Scripts
 - Interactive execution in Jupyter Notebooks

- Three ways to use the code:
 - directly via C++ library
 - Fast
 - Most suitable for extensive, automated tasks
 - Interaction with other C_{+} + libraries

- via WSTP/MathLink in Mathematica
 - User friendly
 - Most suitable for interactive tasks
 - Interaction with Mathematica features

- via Python interface
 - Scripts
 - Interactive execution in Jupyter Notebooks

REvolver

Live Demo and Documentation Overview