The role of *m_{b,c}* in semileptonic B decays

Paolo Gambino Università di Torino & INFN, Torino

INFN

Mini Workshop on Quark Masses, KIT, 26 October 2020

Last few years: new analyses of B-factories data, new calculations of FFs by several lattice collaborations and with light-cone sum rules, rising to the challenges of a precision measurement. This plot does **not** reflect all developments.

The importance of $|V_{cb}|$

J UT_{fit} The most important CKM unitarity test is the Unitarity Triangle (UT) Δm_d V_{cb} plays an important role in UT Δm $\Delta \mathbf{m}$ 0.5 $\varepsilon_K \approx x |V_{cb}|^4 + \dots$ ub and in the prediction of FCNC: sin(2β+γ) $\propto |V_{tb}V_{ts}|^2 \simeq |V_{cb}|^2 \left| 1 + O(\lambda^2) \right|$ -0.5 where it often dominates the theoretical uncertainty. Vub/Vcb constrains directly the UT -0.5 0.5 0 ρ

Our inability to determine precisely V_{cb} hampers significantly NP searches

INCLUSIVE DECAYS: BASICS

- Simple idea: inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows us to express it in terms of B meson matrix elements of local operators
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: **double series in** α_s , Λ/m_b
- Lowest order: decay of a free b, linear Λ/mb absent. Depends on mb,c, 2 parameters at O(1/mb²), 2 more at O(1/mb³)...

INCLUSIVE SEMILEPTONIC B DECAYS

Inclusive observables are double series in Λ/m_b and α_s

$$M_{i} = M_{i}^{(0)} + \frac{\alpha_{s}}{\pi} M_{i}^{(1)} + \left(\frac{\alpha_{s}}{\pi}\right)^{2} M_{i}^{(2)} + \left(M_{i}^{(\pi,0)} + \frac{\alpha_{s}}{\pi} M_{i}^{(\pi,1)}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + \left(M_{i}^{(G,0)} + \frac{\alpha_{s}}{\pi} M_{i}^{(G,1)}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}} + M_{i}^{(D,0)} \frac{\rho_{D}^{3}}{m_{b}^{3}} + M_{i}^{(LS,0)} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots$$

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \Big| \overline{b}(i\overline{D})^{2} b \Big| B \right\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2M_{B}} \left\langle B \Big| \overline{b}(i\overline{D})^{2} b \Big| B \right\rangle_{\mu}$$

Reliability of the method depends on our control of higher order effects. Quarkhadron duality violation would manifest as inconsistency in the fit.

Current HFLAV kinetic scheme fit includes all corrections $O(\alpha_s^2, \alpha_s/m_b^2, 1/m_b^3)$, m_c constraint from sum rules/lattice

EXTRACTION OF THE OPE PARAMETERS

Global shape parameters (first moments of the distributions, various lower cut on E_i) tell us about $m_{b,}m_c$ and the B structure, total rate about $|V_{cb}|$

OPE parameters describe universal properties of the B meson and of the quarks → useful in many applications (rare decays, V_{ub},...)

THE KINETIC SCHEME

$$\begin{split} m_b^{kin}(\mu) &= m_b^{pole} - \left[\bar{\Lambda}(\mu)\right]_{\text{pert}} - \frac{\left[\mu_{\pi}^2(\mu)\right]_{\text{pert}}}{2m_b^{kin}(\mu)} \\ \mu_{\pi}^2(0) &= \mu_{\pi}^2(\mu) - [\mu_{\pi}^2(\mu)]_{pert} \\ \rho_D^3(0) &= \rho_D^3(\mu) - [\rho_D^3(\mu)]_{pert} \end{split}$$

$$\begin{split} \left[\bar{\Lambda}(\mu)\right]_{\text{pert}} &= \frac{4}{3} C_F \mu \frac{\alpha_s(\mu_b)}{\pi} \Big\{ 1 + \frac{\alpha_s}{\pi} \Big[\left(\frac{4}{3} - \frac{1}{2}\ln\frac{2\mu}{\mu_b}\right) \beta_0 - C_A \left(\frac{\pi^2}{6} - \frac{13}{12}\right) \Big] \Big\} \\ \left[\mu_{\pi}^2(\mu)\right]_{\text{pert}} &= C_F \mu^2 \frac{\alpha_s(\mu_b)}{\pi} \Big\{ 1 + \frac{\alpha_s}{\pi} \Big[\left(\frac{13}{12} - \frac{1}{2}\ln\frac{2\mu}{\mu_b}\right) \beta_0 - C_A \left(\frac{\pi^2}{6} - \frac{13}{12}\right) \Big] \Big\} \\ \left[\rho_D^3(\mu)\right]_{pert} &= \frac{2}{3} C_F \mu^3 \frac{\alpha_s(\mu_b)}{\pi} \Big\{ 1 + \frac{\alpha_s}{\pi} \Big[\left(1 - \frac{1}{2}\ln\frac{2\mu}{\mu_b}\right) \beta_0 - C_A \left(\frac{\pi^2}{6} - \frac{13}{12}\right) \Big] \Big\} \end{split}$$

Czarnecki, Melnikov, Uraltsev hep-ph/9708372

- Provides a short-distance, renormalon free definition of heavy quark mass and OPE parameters, by introducing a Wilson cutoff $\mu \approx I \text{ GeV}$ to factor out IR physics. This can be realised in different ways, beyond I-loop SV sum rules are most practical (see Matteo's talk)
- The kinetic mass is one of a family of renormalon subtracted masses (PS, MRS...) but only in this case the definition is tailored on the HQE, although not Lorentz invariant
- 3-loop conversion now available 2005.06487
- The expansion for m_b is truncated at $O(1/m_b)$, however $O(\alpha_s/m_b^2)$ vanish according to hep-ph/0302262. We do not re-expand in μ/m_b

IOYEARS BACK...

The HFAG semileptonic fits seemed incompatible with values of $m_{b,c}$ from sum rules by the Karlsruhe and Hoang's groups. We found why...

IOYEARS BACK...

The HFAG semileptonic fits seemed incompatible with values of $m_{b,c}$ from sum rules by the Karlsruhe and Hoang's groups. We found why...

THEORETICAL CORRELATIONS

Correlations between theory errors of moments with different cuts difficult to estimate

- I. 100% correlations (unrealistic but used in 2010)
- 2. corr. computed from low-order expressions
- **3. constant factor 0<ξ<1 for 100MeV step**
- 4. same as 3. but larger for larger cuts

always assume different central moments uncorrelated

CHARM MASS DETERMINATIONS

Remarkable improvement in recent years. m_c can be used as precise input to fix m_b

CHARM MASS DETERMINATIONS TODAY

							ation status	"the poletion	With etchedol.	Wune atio	dio interiori	
F	$\overline{\mathrm{TAG2018}} \qquad \overline{\mathrm{m}}_{\mathrm{c}}(\overline{\mathrm{m}})$	ī _c)	Collaboration	Ref.	N_{f}	pupli	chiral	Contrij	linite	renor	$\overline{m}_c(\overline{m}_c)$	$\overline{m}_c(3~{ m GeV})$
$N_f = 2 + 1 + 1$		FLAG average for N _f =2+1+1 HPQCD 18 FNAL/MILC/TUMQCD 18 HPQCD 14A ETM 14A ETM 14	HPQCD 18 FNAL/MILC/ TUMQCD 18 HPQCD 14A ETM 14A ETM 14	[58] [59] [60] [86] [61]	$2+1+1 \\ 2+1+1 \\ 2+1+1 \\ 2+1+1 \\ 2+1+1 \\ 2+1+1$	A A A A A	* * * 0	* * ***	* * * 0	* - - *	1.2757(84) $1.273(4)(1)(10)$ $1.2715(95)$ $1.3478(27)(195)$ $1.348(46)$	$\begin{array}{c} 0.9896(61)\\ 0.9837(43)(14)(33)(5)\\ 0.9851(63)\\ 1.0557(22)(153)\\ 1.058(35)\end{array}$
$N_f = 2 + 1$		FLAG average for N _f =2+1 Maezawa 16 JLQCD 16 χ QCD 14 HPQCD 10 HPQCD 08B	Maezawa 16 JLQCD 16 χ QCD 14 HPQCD 10 HPQCD 08B	[33] [87] [88] [41] [56]	2+1 2+1 2+1 2+1 2+1 2+1	A A A A A	• 0 0 0	* • • *	* 0 0	* - * -	$\begin{array}{c} 1.267(12) \\ 1.2871(123) \\ 1.304(5)(20) \\ 1.273(6) \\ 1.268(9) \end{array}$	$\begin{array}{c} 1.0033(96) \\ 1.006(5)(22) \\ 0.986(6) \\ 0.986(10) \end{array}$
		PDG	PDG	[7]							$1.275_{-0.035}^{+0.025}$	
	1.25 1.30 1.35	1.40 Gev										

All fits reported here use $m_c(3GeV)=0.986(13)GeV$. No need to use the kinetic scheme for m_c . We use $m_c(2GeV)$ and $m_c(3GeV)$

FIT RESULTS

Without mass constraints $m_b^{kin}(1 \text{GeV}) - 0.85 \overline{m}_c(3 \text{GeV}) = 3.714 \pm 0.018 \text{ GeV}$

- results depend little on assumption for correlations and choice of inputs, 1.8% determination of V_{cb}
- 20-30% determination of the OPE parameters
- b mass determination in agreement with recent lattice and sum rules results

INDIRECT mb DETERMINATION

Alberti, Healey, Nandi, PG, 1411.6560

PDG 2020/FLAG:

 $m_b(m_b) = 4.198(12) \text{GeV}$

1.02

The fit gives $m_b^{kin}(I \text{ GeV})=4.553(20)\text{ GeV}$ scheme translation error (2loop) $m_b^{kin}(I \text{ GeV})=m_b(m_b)+0.37(3)\text{ GeV}$ $m_b(m_b)=4.183(37)\text{ GeV}$ Conversely, we can use m_b as external input to improve precision on V_{cb}

HIGHER POWER CORRECTIONS

Proliferation of non-pert parameters and powers of 1/m_c starting 1/m⁵. At 1/m_b⁴

 $2M_B m_1 = \langle ((\vec{p})^2)^2 \rangle$ $2M_B m_2 = g^2 \langle \vec{E}^2 \rangle$ $2M_B m_3 = g^2 \langle \vec{B}^2 \rangle$ $2M_B m_4 = g \langle \vec{p} \cdot \operatorname{rot} \vec{B} \rangle$ $2M_{B}m_{5} = g^{2}\langle \vec{S} \cdot (\vec{E} \times \vec{E}) \rangle$ $2M_{B}m_{6} = g^{2}\langle \vec{S} \cdot (\vec{B} \times \vec{B}) \rangle$ $2M_{B}m_{7} = g\langle (\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B}) \rangle$ $2M_{B}m_{8} = g\langle (\vec{S} \cdot \vec{B})(\vec{p})^{2} \rangle$ $2M_{B}m_{9} = g\langle \Delta(\vec{\sigma} \cdot \vec{B}) \rangle$

Mannel, Turczyk, Uraltsev 1009.4622

can be estimated by *Lowest Lying State Saturation* (LLSA) approx by truncating

$$\langle B|O_1O_2|B\rangle = \sum_{n} \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

see also Heinonen Mannel 1407 4384

and relating higher dimensional to lower dimensional matrix elements, e.g.

$$\rho_D^3 = \epsilon \,\mu_\pi^2 \qquad \rho_{LS}^3 = -\epsilon \,\mu_G^2 \qquad \epsilon \sim 0.4 \text{GeV}$$

excitation energy to P-wave states. LLSA might set the scale of effect, but large corrections to LLSA have been found in some cases, see 1206.2296. In LLSA **good convergence of the HQE**.

We used LLSA as loose constraint (60% gaussian uncertainty, dimensional estimate for vanishing matrix elements) in the fit including higher powers

SENSITIVITY TO HIGHER POWER CORRECTIONS

DEPENDENCE ON LLSA UNCERTAINTY

WE RESCALE ALL LLSA UNCERTAINTIES BY A FACTOR ξ

PROSPECTS for INCLUSIVE V_{cb}

- Theoretical uncertainties generally larger than experimental ones
- $O(\alpha_s/m_b^3)$ calculation completed for width (Mannel, Pivovarov) in progress for the moments (S. Nandi, PG)
- It can be used to improve the precision of the m_b input
- $O(\alpha_{s^3})$ corrections to total width feasible, needed for 1% uncertainty
- Electroweak (QED) corrections require attention
- New observables in view of Belle-II: FB asymmetry proposed by S.Turczyk could be measured already by Babar and Belle now, q² moments (Fael, Mannel, Vos)...
- Lattice QCD is the next frontier

MESON MASSES FROM ETMC

Melis, Simula, PG 1704.06105

- on the lattice one can compute mesons for arbitrary quark masses see also Kronfeld & Simone hep-ph/0006345, 1802.04248
- We used both pseudoscalar and vector mesons
- Direct 2+1+1 simulation, a=0.62-0.89 fm, m $_{\pi}$ =210-450 MeV, heavy masses from m_c to $3m_c$, ETM ratio method with extrapolation to static point.
- Kinetic scheme with cutoff at IGeV, good sensitivity up to 1/m³ corrections
- Results consistent with s.l. fits, improvements under way, also following new 3loop calculation of pole-kinetic mass relation

INCLUSIVE SL DECAYS ON THE LATTICE Hashimoto, PG 2005.13730

$$\frac{d\Gamma}{dq^2 dq^0 dE_{\ell}} = \frac{G_F^2 |V_{cb}|^2}{8\pi^3} L_{\mu\nu} W^{\mu\nu} \qquad \qquad W^{\mu\nu}(p,q) = \sum_{X_c} (2\pi)^3 \delta^{(4)}(p-q-r) \times \\ \times \frac{1}{2E_{B_s}} \langle B_s(\boldsymbol{p}) | J^{\mu\dagger} | X_c(\boldsymbol{r}) \rangle \langle X_c(\boldsymbol{r}) | J^{\nu} | B_s(\boldsymbol{p}) \rangle \\ \Gamma = \frac{G_F^2 |V_{cb}|^2}{24\pi^3} \int_0^{\boldsymbol{q}_{\max}^2} d\boldsymbol{q}^2 \sqrt{\boldsymbol{q}^2} \sum_{l=0}^2 \bar{X}^{(l)} \qquad \qquad \bar{X}^{(l)} \equiv \int_{\sqrt{m_{D_s}^2 + \boldsymbol{q}^2}}^{m_{B_s} - \sqrt{\boldsymbol{q}^2}} d\omega X^{(l)} \quad (\omega \text{ hadr. energy})$$

4point functions on the lattice are related to the hadronic tensor in euclidean

$$\sum_{\boldsymbol{x}} e^{i\boldsymbol{q}\cdot\boldsymbol{x}} \frac{1}{2m_{B_s}} \langle B_s(\boldsymbol{0}) | J^{\dagger}_{\mu}(\boldsymbol{x},t) J_{\nu}(\boldsymbol{0},0) | B_s(\boldsymbol{0}) \rangle$$

$$\sim \langle B_s(\boldsymbol{0}) | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q}) e^{-\hat{H}t} \tilde{J}_{\nu}(\boldsymbol{q}) | B(\boldsymbol{0}) \rangle$$

$$\int_0^{\infty} d\omega \, K(\omega,\boldsymbol{q}) \langle B_s(\boldsymbol{0}) | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q}) \delta(\hat{H}-\omega) \tilde{J}_{\nu}(\boldsymbol{q}) | B_s(\boldsymbol{0}) \rangle$$

$$= \langle B_s(\boldsymbol{0}) | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q}) K(\hat{H},\boldsymbol{q}) \tilde{J}_{\nu}(\boldsymbol{q}) | B_s(\boldsymbol{0}) \rangle$$

K approximated by polynomial

 $K(\hat{H},\boldsymbol{q}) = k_0(\boldsymbol{q}) + k_1(\boldsymbol{q})e^{-\hat{H}} + \dots + k_N(\boldsymbol{q})e^{-N\hat{H}}$

A PILOT NUMERICAL STUDY

Hashimoto, PG 2005.13730

Smeared spectral functions can be computed on the lattice, see also 1704.08993

Using Chebychev polynomials to approx the kernel, 2+1 flavours of Moebius domain wall fermions with 1/a=3.6GeV, one gets $M_{Bs}=3.45$ GeV, i.e. $m_b\approx 2.70$ GeV $m_b-m_c \sim 1.7$ GeV only

$$\begin{split} \Gamma/|V_{cb}|^2 &= 4.88(57) \times 10^{-13} \text{ GeV Lattice} \\ \Gamma/|V_{cb}|^2 &= 5.41(82) \times 10^{-13} \text{ GeV OPE} \\ & \text{including all known corrections} \end{split}$$

CONCLUSIONS

- Inclusive s.I. B decays appear in a good shape: they can be improved by higher order calculations, lattice studies and new data from Belle II, as well as improved determinations of m_b and m_c
- The recent 3loop calculation makes it possible to employ precise determinations of m_b in the kinetic scheme, looking forward to 3loop corrections to the width
- Inclusive/Exclusive V_{cb} tension remains, but weaker. Hopefully, it will disappear. LQCD is likely to decide the fate of the V_{cb} puzzle