
Mini Workshop on Quark Masses, KIT,  26 October 2020

Paolo Gambino     
Università di Torino & INFN, Torino

The role of mb,c in 
semileptonic B decays



UTFIT

Last few years: new analyses of B-factories data, new calculations of FFs by several 
lattice collaborations and with light-cone sum rules, rising to the challenges of a 
precision measurement. This plot does not reflect all developments. 



The importance of |Vcb|
The most important CKM unitarity 
test is the Unitarity Triangle (UT)
Vcb plays an important role in UT

and in the prediction of FCNC:

⇥ |VtbVts|2 � |Vcb|2
h
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i

"K ⇡ x|Vcb|4 + ...

where it often dominates the 
theoretical uncertainty.
Vub/Vcb constrains directly the UT

Our inability to determine precisely Vcb hampers significantly NP searches



INCLUSIVE DECAYS: BASICS

Simple idea: inclusive decays do not depend on final state, long distance 
dynamics of the B meson factorizes. An OPE allows us to express it in terms of B 
meson matrix elements of local operators

The Wilson coefficients are perturbative, matrix elements of local ops 
parameterize non-pert physics: double series in αs, Λ/mb 

Lowest order: decay of a free b,  linear Λ/mb absent. Depends on mb,c, 2 
parameters at O(1/mb2), 2 more at O(1/mb3)... 
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INCLUSIVE SEMILEPTONIC B DECAYS
  Inclusive observables are double series in 𝛬/mb and αs
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Reliability of the method depends on our control of higher order effects.  Quark-
hadron duality violation would manifest as inconsistency in the fit.

Current HFLAV kinetic scheme fit includes all corrections , mc 

constraint from sum rules/lattice
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EXTRACTION OF THE OPE PARAMETERS 

 Global shape parameters (first moments of the distributions, various lower 
cut on El) tell us about mb, mc and the B structure, total rate about |Vcb|

 
OPE parameters describe universal properties of the B meson and of the 

quarks → useful in many applications (rare decays, Vub,...) 

hadronic mass spectrumEl spectrum



THE KINETIC SCHEME
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The moments of the spectrum are defined as
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The second central moment of the spectrum is [17]
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In order to put constraints on the SF it can be better to use
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The third moment can also be computed: it amounts to
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In order to change to the kinetic scheme we use
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CF = 4/3 and CA = Nc = 3. ↵s is renormalized in the MS scheme at mb. Also the HQE parameters undergo a
perturbative shift, depending on µ, but only µ2
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at leading power in 1/mb.
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Notice that the charm mass contributions to the O(↵2
s
) corrections in (48,49,52) are not known. To be consistent

with the definition of the kinetic scheme parameters used in the semileptonic fits we will decouple the charm and use
�0 = 9, equivalent to 3 active quark flavours.
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up to unknown higher order corrections. For µ = 1, µb = mb(1) = 4.55 and mc = 0.25mb the above equation becomes
(NL = 3, NV = 1,�0 = 9)
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The first moment of the spectrum in the kinetic scheme is
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Notice that the charm mass contributions to the O(↵2
s
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with the definition of the kinetic scheme parameters used in the semileptonic fits we will decouple the charm and use
�0 = 9, equivalent to 3 active quark flavours.
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up to unknown higher order corrections. For µ = 1, µb = mb(1) = 4.55 and mc = 0.25mb the above equation becomes
(NL = 3, NV = 1,�0 = 9)
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The second moment of the spectrum in the kinetic scheme is
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Provides a short-distance, renormalon free definition of heavy quark mass and OPE 
parameters, by introducing a Wilson cutoff µ≈1GeV to factor out IR physics. This can 
be realised in different ways, beyond 1-loop SV sum rules are most practical (see 
Matteo’s talk)

The kinetic mass is one of a family of renormalon subtracted masses (PS, MRS…) but 
only in this case the definition is tailored on the HQE, although not Lorentz invariant

3-loop conversion now available 2005.06487 

The expansion for mb is truncated at O(1/mb), however O(αs/mb2) vanish according to 
hep-ph/0302262. We do not re-expand in µ/mb 

Czarnecki, Melnikov, Uraltsev hep-ph/9708372

Bigi, Shifman, Uraltsev, Vainshtein

https://arxiv.org/abs/2005.06487


10 YEARS BACK…
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Figure 2: Di↵erent charm and bottom quark determinations in the kinetic mass
scheme. The ellipses represent the PDG-2007 ranges (large green), a global semilep-
tonic fit that di↵ers slightly (see text) from the HFAG one (red), the Karlsruhe (pink)
and Hoang et al. (blue) sum-rules determinations.

cut on the lepton energy. This very strong assumption distorts the fit, leading to high
values of mb,c, even outside the PDG range, and to underestimating the uncertainty
of all non-perturbative parameters. On the opposite extreme, no correlation between
close values of Ecut is unreasonable. A more realistic approach, adopted in the fit
shown in Fig. 2, consists in taking into account the Ecut dependence and correlations
of the known OPE calculation. It leads to slightly lower mb,c with larger errors. A
detailed discussion will be presented elsewhere [35].

A related question concerns the role of radiative moments in the fits: as shown
above they help fixing mb. But the fit is almost identical if one replaces them with the
loose bound m

MS
b (mb) = 4.20(7) GeV given by PDG in 2007. Indeed, the inclusion

of external, well-founded constraints in the fit can be very useful: it decreases the
errors and neutralizes the potential weight of theoretical correlations. As semilep-
tonic decays do determine precisely a linear combination of mb,c, a way to maximally

exploit their potential consists in fitting directly m
MS
c (3GeV) instead of the kinetic

charm mass (this is possible and avoids the scheme conversion error), and including
in the fit one of the recent very precise mc determinations. As an illustration we
have used m

MS
c (3GeV) = 0.986(13) GeV by the Karlsruhe group [30], and obtained

m
kin
b (1GeV) = 4.535(21) GeV, which translates into m

MS
b (mb) = 4.165(45) GeV. This

value for the bottom mass is perfectly consistent with the Karlsruhe group’s own mb

7

Schwanda & PG, 1102.0210

The HFAG semileptonic fits seemed incompatible with values of mb,c 
from sum rules by the Karlsruhe and Hoang’s groups. We found why… 

2010
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Theoretical correlations
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Correlations between theory errors of 
moments with different cuts difficult to 
estimate 

1. 100% correlations (unrealistic but used so far)
2. corr. computed from low-order expressions
3. constant factor 0<ξ<1 for 100MeV step
4. same as 3. but larger for larger cuts

always assume different central moments uncorrelated

in 2010) 
Schwanda, PG 1307.4551



charm mass determinations

Hoang et al ‘13

Remarkable improvement in recent years. 
mc can be used as precise input to fix mb 

sum rules studies of  σ(e+e- → hadrons) 
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CHARM MASS DETERMINATIONS TODAYS. Aoki et al. FLAG Review 2019 1902.08191
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mc(mc) mc(3 GeV)

HPQCD 18 [58] 2+1+1 A ⋆ ⋆ ⋆ ⋆ 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMQCD 18

[59] 2+1+1 A ⋆ ⋆ ⋆ − 1.273(4)(1)(10) 0.9837(43)(14)(33)(5)

HPQCD 14A [60] 2+1+1 A ⋆ ⋆ ⋆ − 1.2715(95) 0.9851(63)
ETM 14A [86] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.3478(27)(195) 1.0557(22)(153)
ETM 14 [61] 2+1+1 A ◦ ⋆ ◦ ⋆ 1.348(46) 1.058(35)

Maezawa 16 [33] 2+1 A ! ⋆ ⋆ ⋆ 1.267(12)
JLQCD 16 [87] 2+1 A ◦ ⋆ ⋆ − 1.2871(123) 1.0033(96)
χQCD 14 [88] 2+1 A ◦ ◦ ◦ ⋆ 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [41] 2+1 A ◦ ⋆ ◦ − 1.273(6) 0.986(6)
HPQCD 08B [56] 2+1 A ◦ ⋆ ◦ − 1.268(9) 0.986(10)

PDG [7] 1.275+0.025
−0.035

Table 10: Lattice results for the MS-charm-quark mass mc(mc) and mc(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain these. When not directly
available in a publication, we employ a conversion factor equal to 0.900 between the scales
µ = 2 GeV and µ = 3 GeV (or, 0.766 between µ = mc and µ = 3 GeV).

quarks and domain-wall fermions for the sea quarks. They adopt six of the gauge ensembles
generated by the RBC/UKQCD collaboration [42] at two values of the lattice spacing (0.087
and 0.11 fm) with unitary pion masses in the range from 290 to 420 MeV. For the valence
quarks no light-quark masses are simulated. At the lightest pion mass Mπ ≃ 290 MeV,
MπL = 4.1, which satisfies the tag ◦ for finite-volume effects. The strange- and charm-quark
masses are fixed together with the lattice scale by using the experimental values of the Ds,
D∗

s and J/ψ meson masses.
JLQCD 15B [89] determines the charm mass by using the moments method and Möbius

domain-wall fermions at three values of the lattice spacing, ranging from 0.044 to 0.083 fm.
They employ 15 ensembles in all, including several different pion masses and volumes. The
lightest pion mass is ≃ 230 MeV with MπL is ≃ 4.4. The linear size of their lattices is in the
range 2.6–3.8 fm.

Since FLAG 16 there have been two new results, JLQCD 16 [87] and Maezawa 16 [33].
The former supersedes JLQCD 15B as it is a published update of their previous preliminary
result. The latter employs the moments method using pseudoscalar correlation functions
computed with HISQ fermions on a set of 11 ensembles with lattices spacing in the range 0.04
to 0.14 fm. Only a single pion mass of 160 MeV is studied. The linear size of the lattices take
on values between 2.5 and 5.2 fm.

25

All fits reported here use mc(3GeV)=0.986(13)GeV. No need to use              
the kinetic scheme for mc. We use mc(2GeV) and mc(3GeV)



FIT RESULTS

results depend little on 
assumption for correlations and 
choice of inputs, 1.8% 
determination of  Vcb

20-30% determination of the 
OPE parameters

b mass determination in 
agreement with recent lattice 
and sum rules results

Without mass constraints

2

a(1) a(2,�0) a(2) p(1) g(0) g(1) d(0)

-0.95 -0.47 0.71 0.99 -1.91 -3.51 -16.6

-1.66 -0.43 -2.04 1.35 -1.84 -2.98 -17.5

-1.24 -0.28 0.01 1.14 -1.91 -3.23 -16.6

TABLE I. Coe⇥cients of (3) for mkin
b (1GeV) = 4.55GeV and

with the charm mass in the kinetic scheme, mkin
c (1GeV) =

1.091GeV (first row), and in the MS scheme, mc(3GeV) =
0.986GeV (2nd row) and mc(2GeV) = 1.091GeV (3rd row).

⇧m2n
X ⌃ = 1

�E`>Ecut

⌃

E`>Ecut

m2n
X

d�

dm2
X

dm2
X .

where E� is the lepton energy, m2
X the invariant hadronic

squared mass, and Ecut an experimental threshold on the
lepton energy applied by some of the experiments. Since
the physical information of moments of the same type is
highly correlated, for n > 1 it is better to employ central
moments, computed relative to ⇧E�⌃ and ⇧m2

X⌃. The in-
formation on the non-perturbative parameters obtained
from a fit to the moments enables us to extract |Vcb| from
the total semileptonic width [19–21].

The expansion for the total semileptonic width is

�sl =�0
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+
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m2
b

+d(0)
⇧3D
m3

b

� g(0)
⇧3LS

m3
b

+ higher orders

⇧
, (3)

where �0 = Aew|V 2
cb|G2

Fm
5
b(1 � 8⇧ + 8⇧3 � ⇧4 �

12⇧2 ln ⇧)/192⌅3 is the tree level free quark decay width,
⇧ = m2

c/m
2
b , and Aew = 1.014 the leading electroweak

correction. We have split the �2
s coe⇧cient into a BLM

piece proportional to ⇥0 = 9 (with three massless ac-
tive quark flavors) and a remainder. The expansions for
the moments have the same structure. The parameters
µ2
⇥, µ

2
G, ⇧

3
D, ⇧3LS are the B meson expectation values of

the relevant dimension 5 and 6 local operators.
In Eq. (3) and in the calculation of all the moments we

have included the complete one and two-loop perturba-
tive corrections [22–27], as well as 1/m2,3

b power correc-
tions [16–18, 28]. We neglect contributions of order 1/m4

b
and 1/m5

Q [29], which appear to lead to a very small shift
in |Vcb|, but we include for the first time the perturbative
corrections to the leading power suppressed contributions
[13–15] to the width (see also [30] for the limit mc ⌅ 0)
and to all the moments [31].

The coe⇧cients a(i), g(i), p(1), d(0) in Eq. (3) are func-
tions of ⇧ and of various unphysical scales, such as the
one of �s. They are given in Table 1 for specific val-
ues of the quark masses. We use the kinetic scheme [32]
with cuto⇥ at 1GeV for mb and the OPE parameters and
three di⇥erent options for the charm mass.

mkin
b mc(3GeV) µ2

⇤ ⇥3D µ2
G ⇥3LS BRc ⇥ 103|Vcb|

4.553 0.987 0.465 0.170 0.332 -0.150 10.65 42.21

0.020 0.013 0.068 0.038 0.062 0.096 0.16 0.78

1 0.508 -0.099 0.142 0.596 -0.173 -0.075 -0.427

1 -0.013 0.002 -0.023 0.007 0.016 -0.047

1 0.711 -0.025 0.041 0.144 0.338

1 -0.064 -0.154 0.065 0.195

1 -0.032 -0.022 -0.255

1 -0.017 0.011

1 0.359

1

TABLE II. Results of the global fit in our default scenario.
All parameters are in GeV at the appropriate power and all,
except mc, in the kinetic scheme at µ = 1GeV. The first
and second rows give central values and uncertainties, the
correlation matrix follows.

THE GLOBAL FIT

The available measurements of the semileptonic mo-
ments [4] and the recent, precise determinations of the
heavy quark masses significantly constrain the parame-
ters entering Eq. (3), making possible a determination of
|Vcb| whose uncertainty is dominated by our ignorance
of higher order e⇥ects. Duality violation e⇥ects can be
constrained a posteriori, by checking whether the OPE
predictions fit the experimental data, but this again de-
pends on precise OPE predictions.
We perform a fit to the semileptonic data listed in

Table 1 of Ref. [8] with �s(4.6GeV) = 0.22 and em-
ploy a few additional inputs. Since the moments are
mostly sensitive to ⇤ mb � 0.8mc, it is essential to in-
clude information on at least one of the heavy quark
masses. Because of its smaller absolute uncertainty, mc

is preferable. Among recent mc determinations [33–35]
we choose mc(3GeV) = 0.986(13)GeV [33], although
we will discuss the inclusion of mb determinations as
well. We also include a loose bound on the chromomag-
netic expectation value from the B hyperfine splitting,
µ2
G(mb) = 0.35(7)GeV2. Finally, as all observables de-

pend very weakly on ⇧3LS , we use the heavy quark sum
rule constraint ⇧3LS = �0.15(10)GeV3.
As should be clear from the above discussion on higher

orders in the OPE, the estimate of theoretical errors and
of their correlation is crucial. We follow the strategy of
[8, 19] for theoretical uncertainties, updating it because
of the new corrections that we include. In particular, we
assign an irreducible uncertainty of 8 MeV to mc,b, and
vary �s(mb) by ±0.018, µ2

⇥ and µ2
G by ±7%, ⇧3D and ⇧3LS

by ±30%. This implies a total theoretical uncertainty
between 2.0% and 2.6% in the semileptonic width, de-
pending on the scheme. For the theory correlations we
adopt scenario D of Ref. [8], i.e. we assume no correla-

mkin
b (1GeV)� 0.85mc(3GeV) = 3.714± 0.018GeV
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FIG. 1. Comparison of di↵erent mb(mb) determinations
[36, 38–43]. The dashed line denotes the error before scheme
conversion.

tion between di↵erent central moments and a correlation
between the same moment measured at di↵erent Ecut,
depending on the proximity of the cuts and their magni-
tude. In the extraction of |Vcb| we use the latest isospin
average ⌧B = 1.579(5)ps [37].

In Table II we show the results of the fit and the corre-
lation matrix among the fitted parameters. With respect
to the default fit of Ref. [8], |Vcb| is reduced by 0.5%, see
Eq. (1), mkin

b is increased by about 10 MeV, µ2
⇡ and ⇢

3
D

are both shifted upward by about 10%. As the method
and inputs are the same of Ref. [8], except for the value
of ⌧B which only reflects in a tiny +0.1% shift in |Vcb|,
the di↵erence can be mostly attributed to the new cor-
rections. Because of smaller theoretical errors, the final
uncertainties are slightly reduced. The �

2
/d.o.f. is very

good, about 0.4.

It is interesting to compare the b mass extracted from
the fit with other recent determinations, generally ex-
pressed in terms of mb(mb) in the MS scheme. This is
shown in Fig. 1, after converting m

kin
b into mb(mb). The

scheme conversion implies an additional ⇠ 30MeV uncer-
tainty [28], enlarging the final error to 37MeV, because
it is known only through O(↵2

s). Our result, mb(mb) =
4.183(37)GeV, agrees well with those reported in the Fig-
ure. The combination m

kin
b (1GeV)�0.85mc(3GeV) is

best determined to 3.714± 0.018GeV.

Table III shows the results when the fit is performed
with mc in a di↵erent scheme or at a di↵erent scale with
respect to our default fit of Table II. The results are
remarkably consistent and very close to the default fit,
with the only partial exception of mb, which becomes 1�
higher when mc(2GeV) is used as input. Table III also
reports the results of a fit with an additional constraint
on mb. Even the currently most precise mb determina-
tions are spoiled by the uncertainty due to the scheme
conversion to m

kin
b . Because of this, and of the large

range of mb values given in the literature, we prefer to
avoid using a mb constraint in our default fit.

Overall, the fit results depend little on the scale of ↵s.
This is shown in Fig. 2 for the default fit. |Vcb| and m

kin
b

m
kin
b mc µ

2
⇡ ⇢

3
D µ

2
G ⇢

3
LS BRc`⌫ 103|Vcb|

a) 4.561 1.092 0.464 0.175 0.333 -0.146 10.66 42.04

0.021 0.020 0.067 0.040 0.061 0.096 0.16 0.67

b) 4.576 1.092 0.466 0.174 0.332 -0.146 10.66 42.01

0.020 0.014 0.068 0.039 0.061 0.096 0.16 0.68

c) 4.548 0.985 0.467 0.168 0.321 -0.146 10.66 42.31

0.017 0.012 0.068 0.038 0.058 0.096 0.16 0.76

TABLE III. Results of the fit in di↵erent scenarios: a) with
mc in the kinetic scheme, m

kin
c = 1.091(20)GeV from [34];

b) in the MS scheme at a lower scale, with mc(2GeV) =
1.091(14)GeV from [34]; c) same as our default fit, with an ad-
ditional constraint mkin

b = 4.533(32)GeV, derived from [34].
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FIG. 2. Relative variation of the central values for |Vcb|,
m

kin
b , and µ

2
⇡ on the scale of ↵s in the default fit.

increase by less than 0.5% if we perform the whole analy-
sis using ↵s(mb/2), while µ2

⇡ and in general the OPE pa-
rameters are slightly more sensitive. A similar behavior
is observed for the fits in Table III. Fig. 3 shows instead
the µkin dependence of |Vcb| in the case a), keeping the
scales of mb and mc distinct. In all cases, the scheme
and scale dependence confirms the size of theoretical er-
rors employed in our analysis.
Finally, we update the value of the semileptonic phase

space ratio C,

C =

����
Vub

Vcb

����
2 �[B̄ ! Xce⌫̄]

�[B̄ ! Xue⌫̄]
,

which is often used in the calculation of the branching
ratio of radiative and rare semileptonic B decays, see [8]
for details. Using the default fit and µWA = mb/2, we
find C = 0.574 ± 0.008 ± 0.014, where the first uncer-
tainty comes from the parameters determined in the fit,
and the second from unknown higher orders, estimated
as explained above. Since the ratio C receives large per-
turbative corrections when it is expressed in terms of
mc(3GeV) [8], we believe that using mc(2GeV) leads to
a more reliable estimate. Including the m

kin
b mass con-

The fit gives mbkin(1GeV)=4.553(20)GeV
scheme translation error (2loop) mbkin(1GeV)=mb(mb)+0.37(3)GeV

mb(mb)=4.183(37)GeV 
Conversely, we can use mb as external input to improve precision on Vcb

Alberti, Healey, Nandi, PG, 1411.6560

PDG 2020/FLAG:
mb(mb)=4.198(12)GeV



HIGHER POWER CORRECTIONS
Proliferation of non-pert parameters and powers of 1/mc starting 1/m5. At 1/mb4

can be estimated by Lowest Lying State 
Saturation (LLSA) approx by truncating    

and relating higher dimensional to lower dimensional matrix elements, e.g.

excitation energy to P-wave states. LLSA might set the scale of effect, but large corrections to 
LLSA have been found in some cases, see1206.2296. In LLSA good convergence of the HQE. 

 We used LLSA as loose constraint (60% gaussian uncertainty, dimensional estimate for 
vanishing matrix elements) in the fit including higher powers

Mannel,Turczyk,Uraltsev 1009.4622

�B|O1O2|B⇥ =
X

n

�B|O1|n⇥�n|O2|B⇥

see also Heinonen,Mannel 1407.4384

⇢3D = ✏µ2
⇡ ⇢3LS = �✏µ2

G ✏ ⇠ 0.4GeV



SENSITIVITY TO HIGHER POWER CORRECTIONS

|Vcb| = 42.00(64)⇥ 10�3

if one uses mc(2GeV) 
and includes PDG 

average for mb
1.5% uncertainty

PG,Healey,Turczyk 1606.06174

Shifts in the OPE parameters 
from the LLSA using the 

2014 fit (blue thick) to the fit 
including higher-order 

corrections (red thin). Error 
bars represent the error in 

the priors and the resulting fit 
error, respectively.



DEPENDENCE ON LLSA UNCERTAINTY

we rescale all LLSA uncertainties by a factor ξ



PROSPECTS for INCLUSIVE Vcb
Theoretical uncertainties generally larger than experimental ones 

O(αs/mb3) calculation completed for width (Mannel, Pivovarov) in progress 
for the moments (S. Nandi, PG)

3loop relation between MS and kin scheme just completed 2005.06487        
It can be used to improve the precision of the mb input

O(𝛼s3) corrections to total width feasible, needed for 1% uncertainty

Electroweak (QED) corrections require attention

New observables in view of Belle-II: FB asymmetry proposed by S.Turczyk 
could be measured already by Babar and Belle now, q2 moments (Fael, 
Mannel, Vos)…

Lattice QCD is the next frontier



MESON MASSES FROM ETMC

on the lattice one can compute mesons for arbitrary quark masses
We used both pseudoscalar and vector mesons
Direct 2+1+1 simulation, a=0.62-0.89 fm, mπ=210-450 MeV, heavy masses 
from mc to 3mc, ETM ratio method with extrapolation to static point.
Kinetic scheme with cutoff at 1GeV,  good sensitivity up to 1/m3  corrections
Results consistent with s.l. fits, improvements under way, also following new 
3loop calculation of pole-kinetic mass relation

MHQ = mQ + ⇤̄+
µ2
⇡
� aHµ2

G

2mQ

+ . . .

see also Kronfeld & Simone hep-ph/0006345, 1802.04248

Melis, Simula, PG 1704.06105



INCLUSIVE SL DECAYS ON THE LATTICE

4point functions on the lattice are related to the hadronic tensor in euclidean

Hashimoto, PG 2005.13730 
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ble charmed states which may appear in the quark-level
decay process b ! c`⌫̄. After describing the kinematics
of the decay and the method to calculate the inclusive
decay rate, we present a pilot lattice study.

For the analysis of the Bs ! Xc`⌫̄ decay, we assign
the momentum pµ for the initial B meson, the momenta
pµ
`

and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]

d�

dq2dq0dE`

=
G2

F
|Vcb|2

8⇡3
Lµ⌫W

µ⌫ , (1)

where GF is the Fermi constant and |Vcb| is one of
the Cabibbo-Kobayashi-Maskawa matrix elements. The
transfer momentum qµ and the lepton energy E` are
evaluated in the rest frame of the initial Bs meson.
The leptonic tensor Lµ⌫ is explicitly written as Lµ⌫ =
pµ
`
p⌫
⌫̄
�p` ·p⌫̄gµ⌫ +p⌫

`
pµ⌫̄ � i✏µ↵⌫�p`,↵p⌫̄,� for massless neu-

trinos. The hadronic tensor Wµ⌫(p, q) is defined through

Wµ⌫(p, q) =
X

Xc

(2⇡)3�(4)(p � q � r)

⇥ 1

2EBs

hBs(p)|Jµ†|Xc(r)ihXc(r)|J⌫ |Bs(p)i. (2)

It is summed over all possible final states Xc to represent
the inclusive decay. The electroweak current relevant for
this decay mode is Jµ = (V � A)µ = c̄�µ(1 � �5)b.

One can perform an integral over the lepton energy E`

in (1), and the remaining integrals over q2 and r2 can
be rewritten in terms of ! and q2, energy and spatial
momentum squared of the final hadrons Xc in the rest
frame of the initial Bs meson, respectively. Thus, the
total decay rate may be calculated as

� =
G2

F
|Vcb|2

24⇡3

Z q2
max

0
dq2

p
q2

2X

l=0

X̄(l), (3)

where q2
max = ((m2

Bs
� m2

Ds
)/2mBs)

2 and

X̄(l) ⌘
Z

mBs�
p

q2

p
m

2
Ds

+q2

d!X(l) (4)

with

X(0) = q2(W 00 � 2W ii), (5)

X(1) = �(mBs � !)qk(W
0k + W k0), (6)

X(2) = (mBs � !)2(W kk + 2W ii). (7)

Here, we take the momentum q in the k-th direction,
while the i-th direction is supposed to be perpendicular
to that. The repeated indices in (5) and (7) are not
summed. The integral over the final state energy ! in
(4) represents the sum over di↵erent states that could
appear for a given momentum q.

On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as

1

V

1

2mBs

hBs(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over the final-state energy (4) can be rewritten
in the form
Z 1

0
d!K(!, q)hBs(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|Bs(0)i,

(10)

where K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). We note
that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
integral (10) can be evaluated if the kernel operator is
well approximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
, (12)

where T ⇤
j
(x) stands for the shifted Chebyshev polyno-

mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
polynomials Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they
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(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
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On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
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from four-point functions that contain interpolating op-
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Introducing the transfer matrix on the lattice e�Ĥt, the
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mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
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decay rate, we present a pilot lattice study.
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the momentum pµ for the initial B meson, the momenta
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and pµ⌫̄ for the leptons ` and ⌫̄ in the final state, re-
spectively. Then, the hadronic state Xc has momentum
(p� q)µ with qµ = (p` +p⌫̄)µ. The di↵erential decay rate
is written as [15, 16]
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| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
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tsrc t1 t2 tsnk

J†
µ Jν

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and Jν are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at sufficiently small ω, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

differential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B → D(∗)ℓν channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µν (tsnk, t1, t2, tsrc) =

∑

x

〈

P S(x, tsnk)J̃
†
µ(q, t1)J̃ν(q, t2)P

S†(0, tsrc)
〉

, (14)

where P S is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b → c current

and assumed to carry the spatial momentum projection
∑

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.
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On the lattice, as a counter part of the hadronic ten-
sor Wµ⌫ , one can calculate the forward-scattering matrix
elements of the form [13]

CJJ

µ⌫
(t; q)

=
X

x

eiq·x
1

2mBs

hBs(0)|J†
µ
(x, t)J⌫(0, 0)|Bs(0)i (8)

from four-point functions that contain interpolating op-
erators to create and annihilate the Bs meson state
|Bs(0)i. Here we set the initial Bs meson state at rest.

Introducing the transfer matrix on the lattice e�Ĥt, the
time dependence of the matrix element in (8) may be
expressed as

1

V

1

2mBs

hBs(0)|J̃†
µ
(�q)e�ĤtJ̃⌫(q)|B(0)i, (9)

where J̃⌫(q) denotes a Fourier transform of the inserted
current: J̃⌫(q) =

P
x eiq·xJ⌫(x). On the other hand, the

integral over the final-state energy (4) can be rewritten
in the form
Z 1

0
d!K(!, q)hBs(0)|J̃†

µ
(�q)�(Ĥ � !)J̃⌫(q)|Bs(0)i

= hBs(0)|J̃†
µ
(�q)K(Ĥ, q)J̃⌫(q)|Bs(0)i,

(10)

where K(!, q) represents an integral kernel determined
by the explicit form of the integrands (5)–(7). We note
that the ! integral is implicit on the right hand side; all
the intermediate states may exist between the currents.
Comparing the right hand side with (9), we find that the
integral (10) can be evaluated if the kernel operator is
well approximated by a polynomial of the form

K(Ĥ, q) = k0(q) + k1(q)e�Ĥ + · · · + kN (q)e�NĤ (11)

with some coe�cients kj(q), since the matrix elements
of the individual term on the right hand side are nothing
but CJJ

µ⌫
(t; q)’s.

The best approximation of K(Ĥ, q) can be obtained
using the Chebyshev polynomials. We define a state
| µ(q)i on which the kernel operator is evaluated as

| µ(q)i = e�Ĥt0 J̃µ(q)|Bs(0)i. A small time evolution

e�Ĥt0 with a constant time t0 is introduced to avoid any
potential divergence in h µ(q)| ⌫(q)i. We can then con-
struct an approximation as

h µ|K(Ĥ)| ⌫i
h µ| ⌫i

' c⇤0
2

+
NX

j=1

c⇤
j

h µ|T ⇤
j
(e�Ĥ)| ⌫i

h µ| ⌫i
, (12)

where T ⇤
j
(x) stands for the shifted Chebyshev polyno-

mials. (The dependence on q is omitted for simplic-
ity.) They are derived from the standard Chebyshev
polynomials Tj(x) as T ⇤

j
(x) ⌘ Tj(2x � 1), so that they
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are defined in the range 0  x  1. Their first
few terms are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) =
8x2 � 8x + 1, and others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained by an integral

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among all possible polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function in a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Figure 1 demonstrates how well K(l)

� (!) is approxi-
mated with certain orders of the polynomials, i.e. N = 5,
10 and 20. An example for l = 0 is shown. Here we take
three representative values of �: � = 0.2, 0.1 and 0.05 in
the lattice unit. The comparison is made for parameters
that roughly correspond to our lattice simulation setup:
the inverse lattice spacing 1/a ' 3.61 GeV, amBs ' 1.0,
t0/a = 1. The momentum insertion q is assumed to be
zero. The kernel function is well approximated with rel-
atively low orders of the polynomials, such as N = 10,
when su�ciently smeared, e.g. � = 0.2. For smaller �’s,
the function exhibits a sharp change near the thresh-
old ! = 1.0, and the Chebyshev approximation becomes
poorer. For better approximation, one needs higher or-
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take the limit of � ! 0, and the error due to finite order
of polynomials has to be estimated. For the other cases,
l = 1 and 2, the polynomial approximations are better
than those for l = 0.

We perform a pilot study of the method described
above using a lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [17], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks only in the valence
sector, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
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FIG. 1. Approximation of the weight function K(l=0)
� (!) with

the Chebyshev polynomials of e�!. For each value of the
smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
�m2

Ds
)/2mBs ' 1.1 GeV. The

lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calculate
the forward-scattering matrix elements with spatial mo-
menta q at (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units of
2⇡/La. The number of lattice configurations averaged is
100, and the measurement is performed with four di↵er-
ent source time-slices.

For a fixed spatial momentum q, we compute a four-

Smeared spectral functions can be computed on the lattice, see also 1704.08993
 Using Chebychev polynomials to approx the kernel, 2+1 flavours

of Moebius domain wall fermions with 1/a=3.6GeV, one gets
 MBs=3.45 GeV,  i.e. mb≈2.70GeV   mb-mc~1.7GeV only
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FIG. 2. X̄(2) at q = 2⇡/La(0, 0, 1) plotted as a function of
the smearing width �. Results with polynomial orders N =
5, 10, 15 are shown.

point function to extract CJJ

µ⌫
(t; q). (Some details of

the lattice calculation is presented in [13].) We then
perform the energy integral (4) using the representa-
tion (12). Matrix elements of the shifted Chebyshev
polynomials is obtained from CJJ

µ⌫
(t+2t0; q)/CJJ

µ⌫
(2t0; q)

at various t’s (and t0 = 1) by a fit with constraints

|h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i| < 1, which is a necessary

condition for the Chebyshev polynomials.
First, we inspect how well the Chebyshev approxima-

tion works by comparing the results for X̄(2) obtained
with the polynomial order N = 5, 10, 15 at various val-
ues of �, the width of the smearing. Figure 2 shows that
the dependence on � is mild and the limit of � = 0 is al-
ready reached at around � = 0.05. The dependence on N
is not significant, which indicates that the approximation
is already saturated at N ' 10. This is crucial because
the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
(e�Ĥ)| ⌫i/h µ| ⌫i at j ' 10 or

larger. The results for X̄(0) and X̄(1) show the similar
tendency. We take the value at � = 0.05 in the following
analysis; the results are within statistical error even if we
extrapolate to � = 0.

The results for X̄ =
P2

l=0 X̄(l) are shown in Figure 3 as
a function of q2. Here, the results for di↵erent polariza-
tions, i.e. longitudinal (k: µ, ⌫ = 0 and 3) or perpendic-
ular (?: µ, ⌫ = 1 and 2) directions to q, are separately
plotted for vector (V V ) and axial-vector (AA) current
contributions.

In Fig. 3 we also show the OPE predictions, which de-
pend sensitively on the heavy quark masses. We have
computed them employing the MS mass for the charm
quark, mc(3GeV) = 1.00GeV, and the kinetic mass for
the fictitious b quark, mkin

b
(1GeV) = 2.70(4)GeV, tuned

to reproduce MBs = 3.45GeV using the results of [18].
For the OPE matrix elements we employ the results of
the semileptonic fit of [3], although they refer to a light
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ted for vector (V V ) and Axial-vector (AA) channels.

FIG. 4. Integrand of the q2-integral plotted in the physical
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spectator and to the physical b mass. We show the lowest
order results and those including O(1/m2) power correc-
tions, which are large and tend to improve the agreement
with lattice data. No perturbative correction is included
at this stage. There is a singularity at the partonic end-
point (q2

max
' 1.36GeV2) which is not apparent in the

plot.
To obtain the total decay rate, we integrate over q2.

We fit X̄(l)/
p

q2
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by a polynomial of q2 and integratep
q2X̄ from 0 to q2

max. The integrand is shown in Fig-
ure 4. Data points are shown up to q2 ' 2.0 GeV2, while
the fit curve is terminated at q2

max. This q2 distribution
is compared with our OPE prediction which now includes
O(1/m3) [19] and O(↵s) terms with ↵s = 0.27, see [20]
and refs. therein. The perturbative correction has an in-
tegrable singularity at the partonic endpoint, where the
hadronic mass equals m2

c
(this also leads to �(n) in the

power corrections). Integrating the fit to lattice data
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we obtain �/|Vcb|2 = 4.88(57) ⇥ 10�13 GeV. We note
that the total decay rate is therefore about five times
smaller than that of the physical Bs meson, because of
the smaller phase space for the artificially small b quark
mass. On the OPE side, various higher order corrections
are available for the total width, from the complete O(↵2

s
)

[21, 22] to the O(↵s/m2) [23, 24] corrections. We imple-
ment them in the kinetic scheme using the same inputs as
above and obtain �/|Vcb|2 = 5.41(82) ⇥ 10�13 GeV. The
dominant uncertainty is due to the value of the b quark
mass, but missing higher order corrections and uncer-
tainties on the matrix elements induce an O(10%) un-
certainty. The O(1/m4,5) are also known [25], but the
relative matrix element are subject to significant uncer-
tainty: using LLSA they would amount to a couple of
percent. Despite these limitations, there is good agree-
ment between the lattice determination and the OPE.

An immediate application is of course the calculation
of the inclusive semi-leptonic decay rate of B mesons and
b baryons (b ! c`⌫̄ and b ! u`⌫̄). Improvement of the
precision is necessary to become competitive in the deter-
mination of |Vcb|. The lattice calculation is still limited
by the statistical precision, which is especially true for
larger recoil momenta and for physical b quark mass.
Smaller lattice spacing is also required to control the
discretization e↵ects. Computations with significantly
larger statistics on fine lattices would therefore be the
next challenge.

The method developed in this work to is more generic
and flexible. Moments of kinematical variables, such as
the lepton energy moments and hadron invariant mass
moments, can also be calculated by a slight modification
of the method. A numerical challenge for the lattice cal-
culation is the large recoil momentum up to ⇠ 2.3 GeV,
which requires fine lattices to make the discretization
e↵ects under control. For b ! u transitions, the ex-
perimental analysis involves various momentum cuts to
veto unnecessary b ! c backgrounds. Our method al-
lows us to apply arbitrary kinematical cuts, and fully
non-perturbative calculation is possible according to the
experimental setup. Comparison to the perturbative cal-
culation would provide a valuable test of the perturba-
tive expansion including the assumption of quark-hadron
duality. It may also be used to determine the hadronic
parameters appearing in the heavy quark expansion. The
fully non-perturbative lattice calculation can also be ap-
plied for D meson decays, for which the energy release is
not large enough to allow reliable perturbative calcula-
tions.

Application of the framework is not limited to the B
meson decays. The lepton-nucleon (`N) scattering is an-
other large class of applications. Traditionally, it has
been analyzed combining perturbation theory and non-
perturbative inputs, such as the parton distribution func-
tions (PDFs). Instead, the method described in this work

allows to directly compute the cross sections without re-
course to intermediate quantities like PDFs, and it opens
a new strategy to study the inelastic scatterings. More-
over, it makes it possible to perform non-perturbative
calculation of low-energy scatterings, which could not be
treated with perturbation theory.

We thank the members of the JLQCD collaboration for
discussions and for providing the computational frame-
work and lattice data. Numerical calculations are per-
formed on SX-Aurora TSUBASA at High Energy Accel-
erator Research Organization (KEK) under its Particle,
Nuclear and Astro Physics Simulation Program, as well
as on Oakforest-PACS supercomputer operated by Joint
Center for Advanced High Performance Computing (JC-
AHPC). This work is supported in part by JSPS KAK-
ENHI Grant Number JP26247043 and by the Post-K and
Fugaku supercomputer project through the Joint Insti-
tute for Computational Fundamental Science (JICFuS).
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CONCLUSIONS
Inclusive s.l. B decays appear in a good shape: they can be 
improved by higher order calculations, lattice studies and new 
data from Belle II, as well as improved determinations of mb 
and mc 

The recent 3loop calculation makes it possible to employ 
precise determinations of mb in the kinetic scheme, looking 
forward to 3loop corrections to the width

Inclusive/Exclusive Vcb tension remains, but weaker. Hopefully, it 
will disappear.  LQCD is likely to decide the fate of the Vcb 
puzzle


