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The IceCube Neutrino Observatory

50 m

1450 m

2450 m

2820 m

IceCube Array

DeepCore

Eiffel Tower

324 m

IceCube Lab

IceTop

Bedrock

81 stations, 
324 optical 
sensors.

86 strings, 
5160 optical 
sensors.

8 strings with 
a denser spacing.

Amundsen-Scott South Pole station

IceCube lab

IceCube: 1 km³ neutrino 
telescope 1.5 km below the 
surface.
IceTop: 1 km² air shower 
array at the top of IceCube. 
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IceTop

1 tank
      = 2 DOMs

1 station
= 2 tanks

Stations 125 m apart

Tanks 10 m apart

DOMs collect the
Cherenkov light 
emitted by the 

particle in the tank

IceTop is at an altitude of ∼2835 m ≈ 692 g/cm2
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Cosmic ray physics with the IceCube Neutrino Observatory

Coincident analysis:

IceTop stations detect the electromagnetic
component (and low-energy muons):
sensitive to the energy of the shower.

High-energy muon bundles travel down to the
IceCube detector:

early lateTime scale

I Minimal muon energy:
∼ 275 GeV.

I Multiplicity: 1 - 1000s.

I Created high in the
atmosphere.

I Typical radius: ∼ 20− 50 m

I Ionization + radiative,
stochastic energy loss.
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Air shower reconstruction with IceTop

Lateral distribution function
(LDF):

S(r) = S125 ·
( r

125 m

)−β−κ log( r
125 m )

Time residuals:

∆t(r) = ar 2 + b

(
exp

(
− r 2

2σ2

)
− 1)

)

→ x, y, z, θ, φ, β, S125 (signal at 125 m from core)
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Air shower reconstruction with IceCube

Unfolding the energy loss pattern + maximum
loglikelihood

Muon bundle energy loss depends on
number of muons.

Stochastic behaviour: count number of
peaks above some threshold (2 selection
procedures).
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→ dE/dX1500, # HE stochastics 1, # HE stochastics 2
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Effect of snow on data

Snow heights in meters
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Electromagnetic particles are attenuated
⇒ rates reduce.
⇒ relation between primary energy and detector response changes.

Scorr,tank = Smeas,tank · exp( d sec θ
λ

).

Most significant systematic on energy spectrum.
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Seasonal variations
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Denser atmosphere means pions
and kaons interact instead of
decaying⇒ less HE muons.

Affects composition
measurement.

No more shift visible in each
month after correction.
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Neural network (NN) + template fitting

Neural network

Inputs:

I S125
I zenith angle
I dE

dX (X )
I # HE stochastics 1
I # HE stochastics 2

Outputs: log10(Energy), mass A.

Relation between inputs and
outputs is unknown, non-linear
mapping.

Energy spectrum directly from
NN output.

Mass shows broad distributions in
NN output.

Template fitting
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Fit

For each energy bin: (Data)i =
fH · Hi + fHe · Hei + fO · Oi +
fFe · Fei .
Binned likelihood fit which takes
into account Poisson fluctuations
on both data and MC.
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Quality

Core resolution
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For contained, coincident events:

Core resolution: 6 - 11 m.

Angular resolution: 0.2◦ - 1.0◦.

Very good energy resolution
(10-15%), small bias.
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Systematics

Absolute IceTop energy scale: ±3% on the data/MC calibration.

Snow correction uncertainty: λ±0.2 m.

Hadronic Interaction Model: SYBILL 2.1 vs QGSJet-II-03.

In-ice light yield systematics:

Systematics uncertainty

DOM eff ± 3%
Hole ice 30 cm + 4.5%

Hole ice 100 cm - 2.9%
+ 10 % scattering + 3.6 %
- 10 % scattering -11.8 %

-7 % scattering and absorption + 7%

Total +9.6%,-12.5%
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Results: Energy spectrum
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Results: Composition
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Results: Individual energy spectra
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Systematics: Individual energy spectra, QGSJET
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Systematics: Individual energy spectra, In-ice light yield

dark gray: -12.5%, light gray: +9.6%
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post-NN evaluation of variables
Comparison of data with MC weighted with reconstructed fractions, together

with H4a composition assumption and pure proton and iron.
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Summary

Discussed in this presentation:

Features are seen in the energy spectrum.

Composition measurement using high-energy muon bundles increases
between ∼ PeV and 100 PeV due to decrease of light component, then
shows a flattening.
More statistics are needed in this high-energy region.

Major systematic on composition measurement are the in-ice light yield
uncertainties.

Not shown, but important as well:

Individual energy spectra, total energy spectrum and composition
reconstruction of 3 separate years agree very well.

Energy spectrum measured by the coincidence and the IceTop-alone
analyses agree well within systematics.

Thanks!
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Back-up
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Event selection

1 Coincident filter,
Nstation ≥ 5, NCh ≥ 8.

2 Removal of random coincidences:
CR2 with CR3.

3 Removal of extra events at the same
time: CR1 and CR2, CR1 and CR3.

4 Containment in IceTop and passing
through the IceCube volume.

5 Reconstruction quality cuts.

50m

1450m

2450m

2820m

IceCubeArray

DeepCore
6 strings-spacing optimized for lower energies

Eiffel Tower

324m

IceCube Lab

IceTop

Bedrock

81 Stations, each with

2 IceTop Cherenkov detector tanks

2 optical sensors per tank

CR 1

2010 : 79 strings,

73 stations.

Feb 2011 : Project

completion.

86 strings including 8 DeepCore strings

60 optical sensors on each string

CR2

CR3
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Results: Comparison IT-alone vs coincident
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Results: Energy spectra 3 years
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Results: Composition 3 years
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