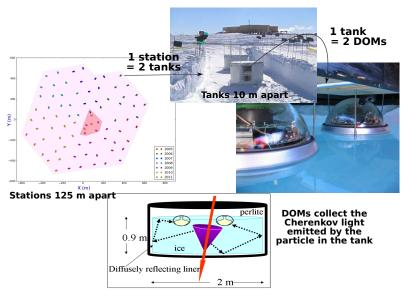

Cosmic ray composition between 1 PeV and 1 EeV using high-energy muon bundles with 3 years of IceTop and IceCube data

Sam De Ridder

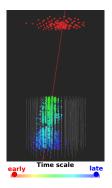


HAP workshop KIT September 2015

The IceCube Neutrino Observatory

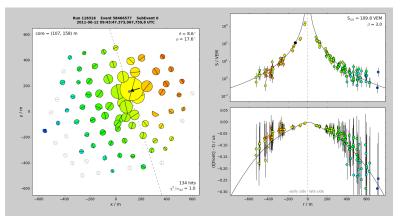
IceTop

IceTop is at an altitude of ${\sim}2835~\text{m}\approx692~\text{g/cm}^2$


Sam De Ridder (Ghent University)

CR composition with IceCube

Cosmic ray physics with the IceCube Neutrino Observatory


Coincident analysis:

- IceTop stations detect the electromagnetic component (and low-energy muons): sensitive to the energy of the shower.
- High-energy **muon bundles** travel down to the IceCube detector:

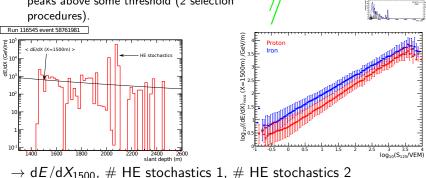
- Minimal muon energy: ~ 275 GeV.
- Multiplicity: 1 1000s.
- Created high in the atmosphere.
- Typical radius: $\sim 20-50$ m
- Ionization + radiative, stochastic energy loss.

Air shower reconstruction with IceTop

Lateral distribution function (LDF):

$$S(r) = S_{125} \cdot \left(\frac{r}{125 \text{ m}}\right)^{-\beta - \kappa \log\left(\frac{r}{125 \text{ m}}\right)}$$

Time residuals:

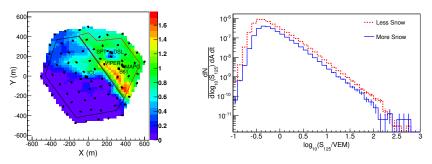

$$\Delta t(r) = ar^2 + b\left(\exp\left(-rac{r^2}{2\sigma^2}
ight) - 1
ight)$$

ightarrow x, y, z, heta, ϕ , eta, S $_{125}$ (signal at 125 m from core)

Air shower reconstruction with IceCube

Unfolding the energy loss pattern + maximum loglikelihood

- Muon bundle energy loss depends on number of muons.
- Stochastic behaviour: count number of peaks above some threshold (2 selection procedures).

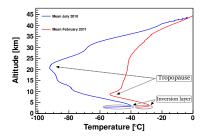

Spice Mie ice

Photonics

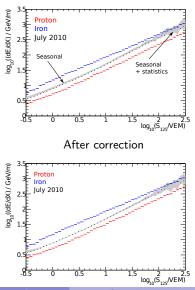
Effect of snow on data

Snow heights in meters

Before correction

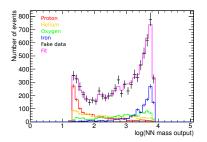

- Electromagnetic particles are attenuated
 - \Rightarrow rates reduce.
 - \Rightarrow relation between primary energy and detector response changes.

$$S_{corr,tank} = S_{meas,tank} \cdot exp(rac{d \sec heta}{\lambda})$$


• Most significant systematic on energy spectrum.

Seasonal variations

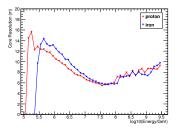
- Denser atmosphere means pions and kaons interact instead of decaying⇒ less HE muons.
- Affects composition measurement.
- No more shift visible in each month after correction.



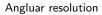
Neural network (NN) + template fitting

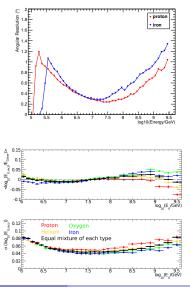
Neural network

- Inputs:
 - ► S₁₂₅
 - zenith angle
 - $\frac{dE}{dX}(X)$
 - # HE stochastics 1
 - # HE stochastics 2
- Outputs: log₁₀(Energy), mass A.
- Relation between inputs and outputs is unknown, non-linear mapping.
- Energy spectrum directly from NN output.
- Mass shows broad distributions in NN output.


Template fitting

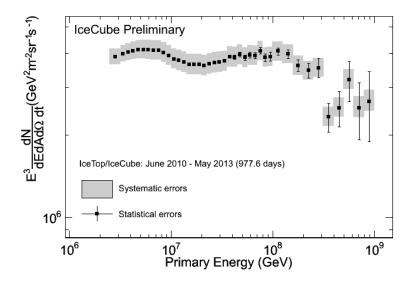
- For each energy bin: $(Data)_i = f_H \cdot H_i + f_{He} \cdot He_i + f_O \cdot O_i + f_{Fe} \cdot Fe_i$.
- Binned likelihood fit which takes into account Poisson fluctuations on both data and MC.


Quality

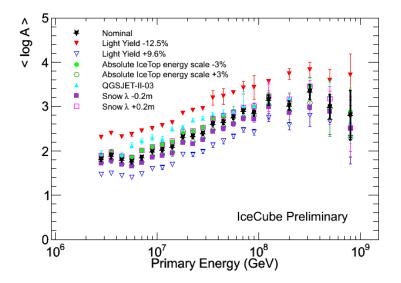

Core resolution

For contained, coincident events:

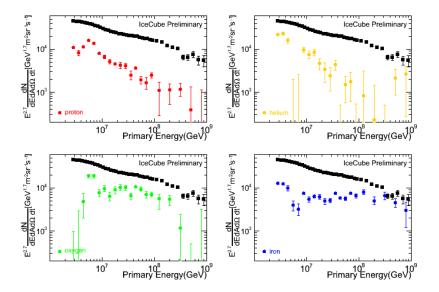
- Core resolution: 6 11 m.
- Angular resolution: 0.2° 1.0° .
- Very good energy resolution (10-15%), small bias.

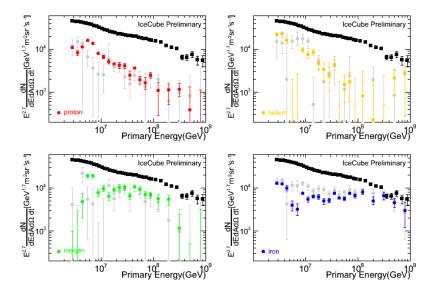


Systematics

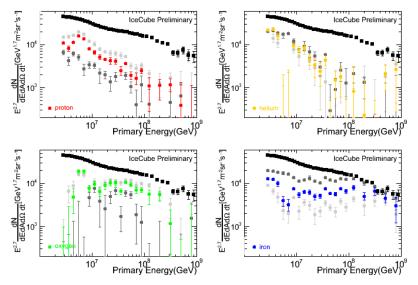

- $\bullet\,$ Absolute IceTop energy scale: $\pm 3\%$ on the data/MC calibration.
- Snow correction uncertainty: $\lambda \pm 0.2$ m.
- Hadronic Interaction Model: SYBILL 2.1 vs QGSJet-II-03.
- In-ice light yield systematics:

	Systematics uncertainty
DOM eff	± 3%
Hole ice 30 cm	+ 4.5%
Hole ice 100 cm	- 2.9%
+ 10 % scattering	+ 3.6 %
- 10 % scattering	-11.8 %
-7 $\%$ scattering and absorption	+ 7%
Total	+9.6%,-12.5%

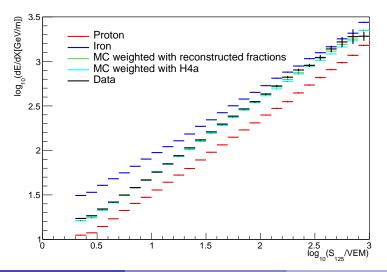

Results: Energy spectrum


Results: Composition

Results: Individual energy spectra



Systematics: Individual energy spectra, QGSJET


Systematics: Individual energy spectra, In-ice light yield

dark gray: -12.5%, light gray: +9.6%

post-NN evaluation of variables

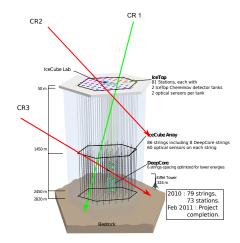
Comparison of data with MC weighted with reconstructed fractions, together with H4a composition assumption and pure proton and iron.

Summary

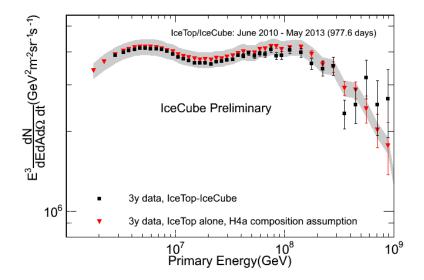
Discussed in this presentation:

- Features are seen in the energy spectrum.
- Composition measurement using high-energy muon bundles increases between ~ PeV and 100 PeV due to decrease of light component, then shows a flattening.
 More statistics are needed in this high-energy region.
- Major systematic on composition measurement are the in-ice light yield uncertainties.

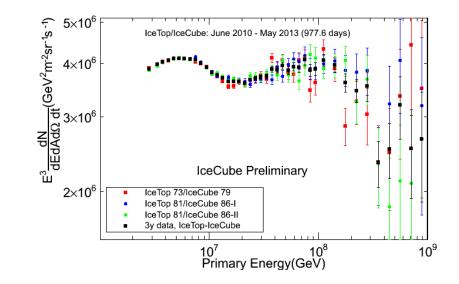
Not shown, but important as well:

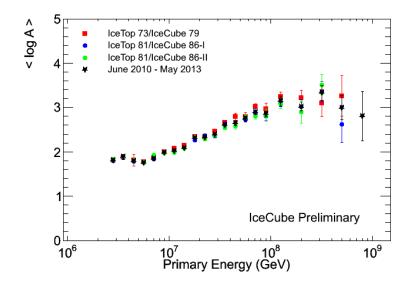

- Individual energy spectra, total energy spectrum and composition reconstruction of 3 separate years agree very well.
- Energy spectrum measured by the coincidence and the IceTop-alone analyses agree well within systematics.

Thanks!


Back-up

Event selection


- Coincident filter, Nstation ≥ 5, NCh ≥ 8.
- 2 Removal of random coincidences: CR2 with CR3.
- 3 Removal of extra events at the same time: CR1 and CR2, CR1 and CR3.
- Containment in IceTop and passing through the IceCube volume.
- Seconstruction quality cuts.


Results: Comparison IT-alone vs coincident

Results: Energy spectra 3 years

Results: Composition 3 years

