CR Physics with TeV Muons in IceCube

Patrick Berghaus DESY Zeuthen/MEPhI Moscow

CR Energy Range of IceCube

CR Energy Range of IceCube

Muon Energy Range of IceCube

IceCube Muons: Physics

Muon Energy Losses in Matter (Ice)

Low-Energy Bundles HE Muons

a muon, maybe two

200-310 muons

< 30 others

High-Level Muon Analyses: HE Muons Bundles

Events are selected based on differential energy loss along track:

Bundles

HE Muons

arxiv:1303.3565

Influence of primary CR model on (conventional) muon and neutrino flux: Ratio to straight power-law ("kneeless") assumption.

Analysis Strategy

Surface Spectrum Reconstruction

Muon Surface Energy: Fully parameterized observable vs. True MC value (Simulation weighted to E^{-2.7} primary spectrum)

All-Sky Muon Energy Spectrum

Approximately power law with index -3.78

All-Sky Energy Spectrum: Prompt

CR Model	Best Fit (ERS)	1σ Interval (90% CL)	Pull $(\Delta \gamma)$	$\sigma(\Phi_{\text{Prompt}} > 0)$
GST-Global Fit [11]	2.14	1.27 - 3.35 (0.77 - 4.30)	0.01	2.64
H3a [11]	4.75	3.17 - 7.16 (2.33 - 9.34)	-0.03	3.97

[11] T.K. Gaisser, T. Stanev and S. Titav, Front. Phys. China 8 (2013) 748 [arXiv:1303.3565 [astro-ph.HE]].

> Total flux is sum of light meson (π , K) and poorly constrained prompt (heavy quark, ϕ , ρ , η) components. Relative contributions ¹⁸ depend on exact shape of nucleon flux around the knee.

arxiv:1303.3565

Muons per Shower in Deep Detector

Experimental Aspect: After selection cuts, measurable energy deposition in detector is very closely related to number of muons.

Bundle Spectrum

Bundles cover CR energy range from knee to ankle Lower energy limit determined by threshold of muons produced in Fe-air interactions.

Consistent picture: Average mass increases up to 3.10¹⁷ eV, stays at same level until the ankle.

In IceTop coincident events, systematic uncertainty is dominated by deep detector effects ("Light Yield").

Summary

Large-Volume Detectors present new opportunity for CR Physics Composition investigations possible without surface array IceCube results cover knee, region between "heavy knee" and ankle Paper submitted to Astropart. Ph. (arXiv:1506.07981)