Hadronic & Shower models: Summary

Sergey Ostapchenko

HAP Workshop on CR Composition

September 21, 23, 201

Old times: clear differences between models

- each model had a 'label'
- differences could be traced down to physics mechanisms

Start of LHC triggered model updates

Additionally: serious updates not related to LHC data

Not directly related to LHC data:

1 Baryon-Antibaryon pair production (Pierog, Werner)

- · Baryon number conservation
- · Low-energy particles: large angle to shower axis
- Transverse momentum of baryons higher
- · Enhancement of mainly low-energy muons

(Grieder ICRC 1973; Pierog, Werner PRL 101, 2008)

2 Leading particle effect for pions (Drescher 2007, Ostapchenko)

- Leading particle for a π could be ρ^0 and not π^0
- Decay of p⁰ almost 100% into two charged pions

How uncertain are present model predictions?

Option SD-: smaller low mass diffraction

- \Rightarrow smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for proton-air \Rightarrow larger $K_{p-\mathrm{air}}^{\mathrm{inel}}, N_{p-\mathrm{air}}^{\mathrm{ch}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction): $\Delta X_{\text{max}} \simeq -10 \text{ g/cm}^2$

How uncertain are present model predictions?

Option SD+: larger high mass diffraction

- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \,\text{g/cm}^2$)
- in both cases: minor impact on $RMS(X_{max})$: $< 3 g/cm^2$

How uncertain are present model predictions?

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- and construct 'mixture models'
- use EPOS spectrum for leading nucleon in 1st interaction and QGSJET-II for the rest
- $\Delta X_{\text{max}} \simeq 5 \text{ g/cm}^2$ in agreement with above

回 と く ヨ と く ヨ と

Is everything allowed now?

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- EPOS for leading nucleon, QGSJET-II - rest
- $\Delta X_{\rm max} \simeq 5 {\rm g/cm^2}$ in agreement with above
- now from the other side: QGSJET-II spectra for p,\bar{p},n,\bar{n} production in $\pi - \operatorname{air}, K - \operatorname{air}$ and EPOS for all the rest

•
$$\Delta X_{\rm max} \simeq 4 {\rm g/cm^2}$$

Is everything allowed now?

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- EPOS for leading nucleon, QGSJET-II - rest
- $\Delta X_{\rm max} \simeq 5 {\rm g/cm^2}$ in agreement with above
- now from the other side: QGSJET-II spectra for p,\bar{p},n,\bar{n} production in π – air, K – air and EPOS for all the rest
- $\Delta X_{\rm max} \simeq 4 {\rm g/cm^2}$
- remaining difference:
 partly due to harder pion
 spectra in p air

• muon 'parent' pions: from low energy interactions

- muon 'parent' pions: from low energy interactions
- preceeded by a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

- multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?
- $N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$
- each order of magnitude: factor $10^{\alpha_{\mu}} \simeq 8$ for N_{μ} $(\alpha_{\mu} \simeq 0.9)$

個 と く ヨ と く ヨ と

- but: relevant physics is there for E < 1 TeV (e.g. ρ^0 production)
- ullet \Rightarrow use fixed target data to test the models

Pi No data for pion air above 1 TeV?

- but: relevant physics is there for E < 1 TeV (e.g. ρ^0 production)
- \Rightarrow use fixed target data to test the models

New data from NA61 very useful

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ()

No data for pion air above 1 TeV?

- but: relevant physics is there for E < 1 TeV (e.g. ρ⁰ production)
- ullet \Rightarrow use fixed target data to test the models
- but: energy-dependence of the relevant mechanisms?! (scaling violation, ρ^0 or \bar{p} production, ...)

No data for pion air above 1 TeV?

- but: relevant physics is there for E < 1 TeV (e.g. ρ⁰ production)
- ullet \Rightarrow use fixed target data to test the models
- but: energy-dependence of the relevant mechanisms?! (scaling violation, ρ^0 or \bar{p} production, ...)

"Saving sinking people is the business of the sinking people" [Russian national wisdom]

PAO measurement of the muon production depth X_{\max}^{μ}

- challenging measurement
- interesting results
- what is the physics behind the model differences?

1) Hardness of pion spectra in π – air (b)p n=1n=2 o pion decay probability: $p_{\rm decay} \propto E_{\pi}^{\rm crit}/E_{\pi}/X$ • X_{max}^{μ} : where $p_{\text{decay}} > p_{\text{inter}}$ n=3 [from J. Matthews]

200

1) Hardness of pion spectra in π – air

- pion decay probability: $p_{\rm decay} \propto E_{\pi}^{\rm crit}/E_{\pi}/X$
- X_{\max}^{μ} : where $p_{\text{decay}} > p_{\text{inter}}$
- harder spectra in π air \Rightarrow deeper X_{\max}^{μ} (effectively one more cascade step)

2) Copious production of (anti-)nucleons

- no decay for $p \& \bar{p} (n \& \bar{n})$ \Rightarrow few more cascade steps
- but: impact on X^μ_{max} IFF
 N_{p,p̄,n,n̄} comparable to N_π!

500

10

in π -air, EPOS for the rest

伺 ト イヨト イヨト

10 19

 E_0 (eV)

 10^{18}

for p, \bar{p}, n, \bar{n} production in $\pi - \operatorname{air}, K - \operatorname{air}$ and EPOS for all the rest

Let us compare X_{max}^{μ} of EPOS-LHC & QGSJET-II-04

- and construct 'mixture models'
- use QGSJET-II spectra for p, \bar{p}, n, \bar{n} production in π - air, K - air and EPOS for all the rest
- now QGSJET-II for all π air, K air interact. and EPOS for all the rest
- the two effects explain major part of the difference for X^{μ}_{\max}

- let us assume that muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B ($E_B < 100E_A$)?
 - this should be achieved within 2 orders of magnitude in energy

- let us assume that muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B ($E_B < 100E_A$)?
 - this should be achieved within 2 orders of magnitude in energy
- in p air collisions, practically all pions have $x_{\rm F} < 0.1$
 - \Rightarrow there is less than 2 cascade steps between 10^{17} and 10^{19}
 - \Rightarrow pion-air collisions are irrelevant to the excess!
 - \Rightarrow same applies to \bar{p} and ρ mechanisms

How robust are predictions for N_{μ} ?

- let us assume that muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B ($E_B < 100E_A$)?
 - this should be achieved within 2 orders of magnitude in energy
- in p air collisions, practically all pions have $x_{\rm F} < 0.1$
 - \Rightarrow there is less than 2 cascade steps between 10^{17} and 10^{19}
 - \Rightarrow pion-air collisions are irrelevant to the excess!
 - \Rightarrow same applies to \bar{p} and ρ mechanisms

\Rightarrow Muon excess has to be produced by primary CR interactions

- if we double N_{ch} for the 1st interaction?
 - < 10% increase for $N_{\mu}!$

How robust are predictions for N_{μ} ?

- let us assume that muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B ($E_B < 100E_A$)?
 - this should be achieved within 2 orders of magnitude in energy
- in p air collisions, practically all pions have $x_{\rm F} < 0.1$
 - $\bullet\,$ $\Rightarrow\,$ there is less than 2 cascade steps between 10^{17} and 10^{19}
 - \Rightarrow pion-air collisions are irrelevant to the excess!
 - \Rightarrow same applies to \bar{p} and ρ mechanisms

\Rightarrow Muon excess has to be produced by primary CR interactions

- if we double N_{ch} for the 1st interaction?
 - < 10% increase for N_{μ} !
- to get, say, a factor 2 enhancement: N_{ch} should rise by an order of magnitude

Back to LHC data: they are and will be of great help

Back to LHC data: they are and will be of great help

Most remarkable: LHC data constrain physics mechanisms in models

Back to LHC data: they are and will be of great help

Welcome to the Time of Big Changes in Sims!

