

# Spectrum and composition of (G+EG) cosmic rays: overview of the experimental results

### Antonella Castellina

INFN & INAF, Torino, Italy KIT Composition Workshop, 21-23 September 2015





### The experimental observables



KIT Workshop, 21-23 September 2015

A.Castellina

| Array                    | g cm <sup>-2</sup> | Detector                              | ΔΕ [eV]                              | Area [km²]                |                                                                                                                                                                                                         |  |
|--------------------------|--------------------|---------------------------------------|--------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ARGO                     | 600                | RPC<br>hybrid (LLASHO)                | 0.3-5 10 <sup>15</sup>               | 0.0056                    | <ul> <li>High altitude experiments:</li> <li> <ul> <li>M<sub>part</sub> ~ indip of composition</li> <li>close to maximum of EAS:<br/>low fluctuations</li> </ul> </li> <li>energy resolution</li> </ul> |  |
| Tibet-ASγ                | 600                | Scintillator/burst<br>detector        | 1-200 10 <sup>15</sup>               | 0.0037 [0.5<br>phase III] |                                                                                                                                                                                                         |  |
| EasTop                   | 820                | scintillator/muon                     | 1-100 10 <sup>15</sup>               | 0.01                      |                                                                                                                                                                                                         |  |
| GAMMA                    | 700                | scintillator/muon                     | 3-200 10 <sup>15</sup>               | 0.03                      |                                                                                                                                                                                                         |  |
| KASCADE                  | 1020               | scintillator/muon                     | <b>2-90 10</b> <sup>15</sup>         | 0.04                      |                                                                                                                                                                                                         |  |
| CASA-MIA                 | 860                | scintillator/muon                     | 0.1-100 10 <sup>15</sup>             | 0.25                      | O a laurel auto a im an tau                                                                                                                                                                             |  |
| Kascade-Grande           | 1020               | scintillator/muon                     | 10 <sup>16</sup> -10 <sup>18</sup>   | 0.49                      | Sea level experiments:<br>EAS after maximum                                                                                                                                                             |  |
| ІсеТор                   | 680                | ice Cher.tanks                        | 10 <sup>16</sup> -10 <sup>18</sup>   | 1                         | 🥯 exploit longitudinal                                                                                                                                                                                  |  |
| Tunka                    | 900                | unshielded PMTs                       | 10 <sup>15</sup> -10 <sup>18</sup>   | 3                         | distribution differencies for                                                                                                                                                                           |  |
| Yakutsk                  | 1020               | scintillator/<br>unshielded PMTs      | 10 <sup>15</sup> -10 <sup>19</sup>   | ~40                       | different primaries                                                                                                                                                                                     |  |
| Telescope Array<br>+TALE | 880                | scintillator+<br>fluorescence tel.    | 4 10 <sup>15</sup> -10 <sup>20</sup> | 700                       | composition                                                                                                                                                                                             |  |
| Auger<br>+Infill         | 840                | water Cher.tanks<br>fluorescence tel. | 10 <sup>17</sup> -10 <sup>20</sup>   | 3000                      |                                                                                                                                                                                                         |  |

### Direct-indirect measurements... a reminder



Past experiments:

- single hadrons from EasTop and Kascade,
- coincidence between EAS
   Cherenkov light and underground
   TeV muons from EasTop/
   MACRO
- 🦉 Ne-Nμ (EasTop, Kascade, Grapes)
- Ϋ burst detectors (Tibet) Ş
- overlap with direct measurements
- Helium spectrum harder than proton one
- helium is the most abundant element below the knee
- proof of hadr. int. models below 10
   PeV

### The knee region : "old" results



• all-particle knee ~ 4 10<sup>15</sup> eV

• most experiments point to a p+He knee around few PeV, heavier knee not visible (no statistics)

- if Peters cycles,  $E_k$ (Fe) must be found at ~ 2 x  $E_k$ (p) ~ 7-10 10<sup>16</sup> eV
- different indication from Tibet-AS $\gamma$ , proton knee at lower energy

### TIBET-II and III



- emulsion chambers (80 m<sup>2</sup>): E, position,  $\vartheta$  of  $\vartheta$  families
- burst detectors below EC : N<sub>b</sub> (burst size)



### Tibet-ASy all particle spectrum $(10^{14} - 10^{17} \text{ eV})$





Separation based on shower core study (burst detectors)

Low statistics (1176 events)

- power index for light spectrum steeper wrt all-particle one: E<sub>k</sub>(light) < E<sub>k</sub>(all)
- main component at the all particle knee is heavy

### TIBET [YAC-II + Tibet-III + MD]

- Tibet-III (50000 m<sup>2</sup>): fast timing counters + density counters for Primary energy and incident direction.
- Solution  $\frac{1}{2}$  YAC-II (5000 m<sup>2</sup>): 400 High energy AS core with large dynamic range (1 to 10<sup>6</sup> MIP)
- **Tibet-MD (** 4500 m<sup>2</sup> ) : underground water Cherenkov muon detector

#### Expected performances of the new hybrid Tibet

experiment

- simultaneous observation of cores with YAC and MD: <u>claim ability to separate p, He, medium and</u> <u>heavy between 50 TeV and 10 PeV accurately.</u>
- energy resolution at 1 PeV better than 12%  $\mathbb{P}$



7 r.l.

Pb

Scint



11







KIT Workshop, 21-23 September 2015

A.Castellina

### Analog (ev by ev) measurement ARGO - RPC

Energy measured by  $N_{p8}(<8 \text{ m}) + \text{EAS}$  age  $N_{p8 \text{ max}} \approx N_{p8} \cdot e^{\frac{h_0 \sec \theta - X_{\text{max}}(s')}{\lambda_{abs}}}$ 

needs assumption on EAS attenuation after max (120 g cm<sup>-2</sup>)

#### Mass sensitive parameters:

#### correlation between age and $N_{\rm p8}$

#### Hybrid measurement ARGO + WFCTA (LLHASO)

Energy measured by  $N_{phe}^{total}$  (<[20 m]) needs accurate determination of geometry  $\sigma_{\theta}$ <0.4<sup>0</sup>,  $\sigma_{core}$  ~ 2 m

#### Mass sensitive parameters: Nmax(<3 m), shape of Cherenkov images



#### Analog measurement

#### For the flux:

- Geometrical Aperture : (5 % in/out contamination) ⊕ (2.5% angular contamination) =5.6 % Efficiency: (5% from MC samples)  $\oplus$  (<10% efficiency estimation of the mixture) = 5.0-11.2 % Unfolding: 3%
- Hadronic interaction model < 5%
- TOTAL: 8.1% 13.8 %
- TOTAL: (conservative) = 14%



#### For the energy scale:

- Gain of the analog system: 3.7 %
- Energy calibration: 0.03 in LogE = 6.9%
- Hadronic interaction model: 5%
- **TOTAL: 9.3 %**
- TOTAL: (conservative) = 10%



 $p_L = log_{10}(N_{max}) - 1.44 \cdot log_{10}(E_{rec}/TeV)$ 

 $p_C = L/W - 0.0091(R_p/1 m) - 0.14 \cdot log_{10}(E_{rec}/TeV)$ 

in the core region  $\rightarrow$  mass sensitive \* Cherenkov telescope: longitudinal information

ARGO-YBJ: core reconstruction & lateral distribution

Wide Filed of View Cherenkov Telescope: a

prototype of the future LHAASO telescopes

5 m<sup>2</sup> spherical mirror  $16 \times 16$  PMT array

Elevation angle: 60°

pixel size 1° FOV: 14° x 14°

Hillas parameters  $\rightarrow$  mass sensitive

KIT Workshop, 21-23 September 2015

#### A.Castellina

# ARGO-YBJ all particle spectrum



# ARGO-YBJ light (p+He) spectrum



| Data   | σ(E) | σ <sup>sys</sup><br>(F. scale) | σ <sup>SYS</sup><br>(flux) |  |
|--------|------|--------------------------------|----------------------------|--|
| Hybrid | 25%  | ~ 9.7%                         | ~28%                       |  |
| Analog | 15%  | 5%                             | 20%                        |  |

- evidence for a proton knee at  $E_k = (700 \pm 230) \text{ TeV}$ •  $\sigma$  from (-2.56 \pm 0.05) to (-3.24 \pm 0.36)
- compatible with JH spectrum with proton knee at I PeV

# ARGO-YBJ all particle spectrum





# Kascade-Grande : Analysis technique



# Kascade-Grande : Analysis technique





All particle spectrum  $(10^{16} - 10^{18} \text{ eV})$ 

| Source of uncertainty                             | 10 <sup>16</sup> eV | 10 <sup>17</sup> eV | 10 <sup>18</sup> eV |
|---------------------------------------------------|---------------------|---------------------|---------------------|
|                                                   | (%)                 | (%)                 | (%)                 |
| Intensity in different angular bins (attenuation) | -0/+6.5             | 10.9                | 21.3                |
| Energy calibration and composition                | 10.3                | 5.8                 | 13.4                |
| Slope of the primary spectrum                     | 4.0                 | 2.0                 | 1.9                 |
| Reconstruction (core and shower sizes)            | 0.1                 | 1.4                 | 6.5                 |
| Total                                             | -11.1/+12.8         | 12.6                | 26.1                |
| Artificial spectrum structures (extreme cases)    |                     | <10                 |                     |
| Hadronic interaction model (EPOS-QGSJet)          | -5.3                | -16.9               | -14.6               |
| Statistical error                                 | 0.6                 | 2.7                 | 17.0                |
| Energy resolution (mixed composition)             | 24.7                | 18.6                | 13.6                |

### Kascade-Grande



- knee feature ~ $10^{17}$  eV in the spectrum of the heavy group
- a constant slope well represents the light-medium group: hardening at higher energies?
- similar behavior for all hadronic interaction models

# Kascade-Grande : ankle-like feature



- (heavy+medium) component knee ~10<sup>16.88</sup> eV
- light component knee ~10<sup>17.08</sup> eV,  $\Delta\gamma$ =0.46 (from -3.25 to -2.79) —> 5.8 $\sigma$ : start of the transition ?
- same population for heavy above  $E_k$ (heavy) and light below  $E_k$ (light)???

# Kascade-Grande - Unfolding



• all particle: compatibility among different experimental results, lower intensity at higher E

- elemental groups: good agreement with Kascade(QGSJetII-O2): heavy elements knee at 80 PeV, possible recover of protons above 10<sup>17</sup> eV (but lack of statistics)
- combined analysis on-going

# Kascade-Grande & Kascade (1014-1018 eV)



- advantages in analysis thanks to more accurate reconstruction and larger fiducial area
- can be extended to 1014 eV



#### Combined-Array:

- 37 + 252 detectors
- area:
  - 700x700  $m^2$ used: 284088  $m^2$
- measures: N<sub>ch</sub>, N<sub>u</sub>
- energy range:  $10^{14} 10^{18} \,\mathrm{eV}$
- $\sim 87\%$  larger fid. area compared to Grande standalone
- more than 103 million events inside the selected area survive the quality cuts and arrived within 0 to 35° to the zenith.

#### A.Castellina

# Above the knee : lceTop

#### 2835 m a.s.l. [680 g cm<sup>-2</sup>] A ~ 1 km<sup>2</sup>, 125 m grid 162 ice Cherenkov tanks (2/station)



#### 81 stations (162 tanks) typical spacing: 125 m fill ratio ~ $4 \times 10^{-4}$ altitude: 2835 m (X = 680 g cm<sup>-2</sup>)





# IceTop : Analysis technique









KIT Workshop, 21-23 September 2015

Total

+7.5% - 6.5%

+10.8% -6.4%

Total

+9.6%

-12.5%

# lceTop: composition



Elemental spectra= all-particle x NN fractions

Systematic uncertainty: +9.6% -12.5% (dominant effect light yield in the in-ice detectors)

- p, He steeper, medium and heavy harder
- composition increases up to ~  $10^{17}$  eV, then go a lighter one again

# IceTop : composition



# Above the knee : Tunka

675 m a.s.l. A ~ 3 km<sup>2</sup>, 85 m grid 175 unshielded optical detectors



+Tunka-HISCORE : 9(+33) stations each with 4 PMT (Winston cones) +Tunka-REX : 20 radio antennas +5 IACT +muon detectors (2000 m<sup>2</sup>)



#### TUNKA-133 175 optical detectors



# Tunka : Analysis technique





• hardening around  $2 |O^{16} eV$  and steepening at ~  $3 |O^{17} eV$  in agreement with other experimental results

• agreement with TALE spectrum between 2  $10^{17}$  and  $10^{18}$  eV







40 years data taking: many reconfigurations

Small Cherenkov array: measure of the 10<sup>15</sup>-10<sup>18</sup> eV range with hybrid technique: electrons, muons, Cherenkov light 20 years of data 100 m a.s.l. [1020 g cm<sup>-2</sup>] A ~ 40 km<sup>2</sup>, 1000 m grid 10<sup>15</sup>-10<sup>19</sup> eV




### **Yakutsk**

• knee ~ 4 10<sup>15</sup> eV,  $\Delta\gamma$ ~0.42 • second knee ~ 2 10<sup>17</sup> eV,  $\Delta\gamma$ ~0.32 lower than that of 1st knee (metagalactic component?)

- changing mass across the range
- peak ~  $0.8-210^{17}$  eV
- agreement among different analysis methods ( $X_{max}$ ,  $\sigma(X_{max})$ , muons, etc.)

1400 m a.s.l. [880 g cm<sup>-2</sup>] 507 SD, 1.2 km grid, 700 km<sup>2</sup> 16 TALE counters, 400 m grid 3 FD (BR,LR,MD/TALE)



KIT Workshop, 21-23 September 2015

**Telescope** Array





• 4.8 orders of magnitude spectrum, 4 spectral features

• thanks to TALE, a clear 2nd knee is visible at ~1.5  $10^{17}$  eV and a low energy ankle appears at 1.8  $10^{16}$  eV

• ankle at 5.2  $10^{18}$  eV cutoff at 6.3  $10^{19}$  eV (6.5 $\sigma$ )

### Telescope Array - composition





KIT Workshop, 21-23 September 2015

# Telescope Array - interpreting the energy spectrum

- Pure proton,  $E > 10^{18.2} \text{ eV}$
- Injection spectrum  $E^{-\gamma}$ ,  $E_{max} = 10^{21} \text{ eV}$
- Source density  $(1 + z)^m$  (per comoving unit volume)
- Hypotheses Energy losses with CMB and IRB.
  - Propagation code: TransportCR [checked by CRPropa]
    - Propagation without considering magnetic fields ( $B_{IGMF} < -0.1 \text{ nG}$ ) •
    - $\rightarrow$  Source distance: 2 < -0.7
- data compatible with pure proton model constraints on fit parameters  $\gamma = 2.18 - 0.14 + 0.08$  (stat.+sys.) m = 6.8 - 1.1 + 1.6 $\Delta \log_{10} E = -0.04 (-9\%) - 0.03 + 0.04$  $X^{2}_{min}/d.o.f.=18.0/17$  z<sub>min</sub> upper limit (no sources with z<z<sub>min</sub>)  $z_{min} = 0.01 (\sim 40 \text{ Mpc}) 99.7\% \text{ C.L.}$



#### A.Castellina

#### The Pierre Auger Observatory

1400 m a.s.l. [820 g cm<sup>-2</sup>] A ~ 3000 km<sup>2</sup>, 1500 m grid 1660 water Cherenkov SD + 24 FD





- FD used to set the energy scale of all data sets
- EFD systematic uncertainty 14%, shared by SD
- the 4 independent spectra agree within systematics

|                          | SD-1500 ( <del>0</del> <60º) | SD-1500<br>(θ>60º) | SD-750 (θ<60º)           |
|--------------------------|------------------------------|--------------------|--------------------------|
| Energy resolution        | (15.3 <u>+</u> 0.4)%         | (19 <u>+</u> 1)%   | (13 <u>+</u> 1)%         |
| Flux syst. uncertainties | 5.8%                         | 5%                 | 14% (<7%) at 0.3 (3) EeV |

KIT Workshop, 21-23 September 2015



- ankle observed at  $E_{ankle}$  = 4.8 10<sup>18</sup> eV
- cut-off clearly observed (>20σ significance)
- fitting model: power law below the ankle+power law with smooth suppression above
- Es=4.2 10<sup>19</sup> eV,  $E_{1/2} = (2.48 \pm 0.01) \times 10^{19} eV$

# Auger - composition



• measurement extended down to 3 10<sup>17</sup> eV thanks to HEAT

•  $E_{1/2} = (2.48 \pm 0.01) \times 10^{19} \, eV$ 







both post-LHC models suggest heavier composition at lower energies , lightest around 2 10<sup>18</sup> eV, heavier again towards highest energies
 unphysical results with QGSJet-O4 for the second moment of InA

## Auger : muon production depth



the consistency between the two Xmax can help to constrain hadronic interaction model



- data better reproduced with a mixture of p+He+N+Fe
- p fraction increases to >60% at the ankle, drops near 10<sup>19</sup> eV, maybe rising again at higher energies
  - -> EG according to anisotropy limits !
- no significant contribution of Fe

# Auger - interpreting the energy spectrum

- identical sources homogeneously distributed
- Injection of H,He,N,Fe, injection spectrum
- Photodis.cross section + EBL (far IR)

Hypotheses

Propagation code: CRPropa, SimProp - no magnetic fields



$$\frac{\mathrm{d}N_{\mathrm{inj},i}}{\mathrm{d}E} = \begin{cases} J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma}, & E/Z_i < R_{\mathrm{cut}} \\ J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(1 - \frac{E}{Z_i R_{\mathrm{cut}}}\right), & E/Z_i > R_{\mathrm{cut}} \end{cases}$$

- hard injection (γ~1) and low cutoff (R<sub>cut</sub><10<sup>18.7</sup>
   eV) favored
- $\gamma \sim 2$  strongly disfavoured by  $X_{max}$  distribution width
- EPOS-LHC favoured over Sibyll2.1 and QGSJetO4

- $\bullet$  result mainly due to narrow  $X_{\max}$  distributions
- Ist minimum very sensitive to propagation models
- better fit for lower photodisintegration rates and/or lower E, $X_{max}$  in data (within syst.unc.)

#### $X_{\text{max}}$ distributions at best fit



# Auger / Telescope Array comparison



#### TA:

- maximize statistics
- result: "(X<sub>max</sub>) in detector"
- compare to: simulations including detector effects

#### Auger:

- minimize measurement bias
- result: "(X<sub>max</sub>) in atmosphere"
- compare to: simulations at generator level

### Auger / Telescope Array comparison



• 10% shift in energy would bring the two in agreement up to  $10^{19.3}$  eV

• large discrepancy above

### Auger : declination dependence of energy flux



• no indication of a declination-dependent flux (<5% below  $E_s$ , <13% above)

• differencies between Auger and TA in the suppression region not explained

• the differences found between the measurements in two separate declination bands are compatible with the variations expected from a dipolar modulation of the flux.

# Auger / Telescope Array comparison



Simulated composition according to Auger result fed to the TA MC simulation and analysis

- the two data sets are in excellent agreement even without accounting for systematics on Xmax
- TA cannot distinguish between proton or "Auger mixed" composition with the current level of uncertainties
- ullet inclusion of difference in energy scale still to be included (foreseen effect only few g cm^-2)

# Large Scale Anisotropy above PeV



- upper limits on amplitudes are at the % level over a wide energy range
- 5.7% equatorial dipole amplitude above 8 EeV from Auger analysis
- phase transition : increasing contribution of EG cosmic rays



## Point source searches

astrophysical origin of UHE sources (top-down models strongly disfavoured)
 look at highest energies (as deflections proportional to Z/E)
 look close (as cutoff is seen for E> 40 EeV)

- No significant excesses were found
- 🗳 Two medium scale spots



#### TA

7 years, 109 Events (> 57 EeV)

Northern Hemisphere: hot spot seen by TA (3.4  $\sigma$ ) near the Ursa Major cluster

#### Auger

10 years 157 events (> 57 EeV)

Southern Hemisphere: hot spot seen by Auger (post-trial prob 1.4%) near to Cen A

### Some conclusion from experimental data

#### knee region

- $\checkmark$  all particle knee  $\sim 4 \, 10^{15} \, \text{eV}$
- ✓ light component knee < PeV (Tibet), ~700 TeV,</li>
   (Argo) a factor ~4 lower than Kascade
- 10<sup>-3</sup>-10<sup>-4</sup> LSA amplitudes found around TeV energies
- change of trend, already pointed out by EasTop and others, above 10<sup>14</sup> eV



🖗 different analysis, at different altitude

Secomparison of systematics

# Some conclusion from experimental data

transition region :  $10^{16}$ - $10^{18}$  eV



KIT Workshop, 21-23 September 2015

# Some conclusion from experimental data

#### 3 UHE region

- TA and Auger data agree in composition, but different interpretation is given
- Auger shows p-fraction ~60%
   ~10<sup>18.2</sup> eV, almost zero ~10<sup>19</sup> eV
- Fe fraction always negligible, p fraction compatible with 10% at highest energies
- strong upper limits to primary photons
   absence of cosmogenic neutrinos

disfavours pure p composition

 poor statistics >3 10<sup>19</sup> eV, need composition measurement above (TAx4, AugerPrime)
 importance of joint working groups, study of systematics

- flux suppression and ankle clearly established
- difference in UHE flux between TA and Auger, not explained by declination dependence
- isotropic sky around 10 EeV
- $\checkmark$  no significant point source anisotropy
- hot spot in TA sky at 57 EeV, warm spot in Auger sky at 57 EeV



KIT Workshop, 21-23 September 2015





We need ...more data ...better control of systematics ... upgrades !

Joint effort among different collaborations is now a most welcomed reality

(...hopefully more to come) ! KIT Workshop, 21-23 September 2015

#### Why saying, "I don't know"



makes you a good marketer

### Backup slides

### **UHE: future upgrades**



KIT Workshop, 21-23 September 2015

A.Castellina

#### Photons

- Exploit observable differencies between & and hadrons

🎐 z EAS develop deeper in atmosphere: larger Xmax

FAS look young: larger rise time, smaller radius of curvature



SD "Old" shower (µ) Hybrids FD 1300 simulations 18 < log\_(E\_/eV) < 18.5 E C 1200 photon 1100 photon proton 1000 iron time (ns 900 "Young" shower (e,y) 800 2.6 700 600 1400 1600 Atmospheric Depth (g/cm2) 500 0.5 log (S) time [ns] signal amplitude

#### Photons



#### Photon point sources

Protons near the ankle produce photons ~ I EeV : can we find them?
as the energy flux in TeV & rays exceeds I eV cm<sup>-2</sup> s<sup>-1</sup> for some sources (CenA, Galactic center) with this energy spectrum, we expect similar flux at EeV (as sources with spectrum ~ E<sup>-2</sup>, put the same energy flux/decade)



No point sources of EeV photons is found. For  $d\phi/dE \sim E^{-2}$ φ<sub>ö</sub><0.25 eV cm<sup>-2</sup> s<sup>-1</sup> well below expectations No Galactic sources of protons IF -> they are not transient -> they do not emit in jets towards Earth -> they are too faint

#### <u>Neutrinos</u>

![](_page_67_Figure_1.jpeg)

• Earth-skimming:  $v_c CC (90-95^{\circ})$ 

Neutrinos in Auger:

• down-going : all flavours CC&NC

#### <u>Neutrinos</u>

![](_page_68_Figure_1.jpeg)

 $\rightarrow$  k ~ 6.4 x 10<sup>-9</sup> GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> [0.1 - 25] EeV

#### Auger limits constrains models with pure proton primaries

# Correlation with UHE neutrinos

#### Telescope Array, Auger, IceCube Collaborations @ ICRC 2015

Galactic Coordinates

![](_page_69_Figure_3.jpeg)

Joint analysis of 3 Collaborations!

∆TA > 57 EeV O Auger > 52 EeV + IC cascade X IC tracks

#### All correlations less than 3.3 sigma significance

To be monitored with larger data set (in particular the analysis with cascades)

KIT Workshop, 21-23 September 2015

A.Castellina

| Systematic uncertainties on the energy scale |            |  |
|----------------------------------------------|------------|--|
| Absolute fluorescence yield                  | 3.4%       |  |
| Fluor. spectrum and quenching param.         | 1.1%       |  |
| Sub total (Fluorescence yield - sec. 2)      | 3.6%       |  |
| Aerosol optical depth                        | 3%÷6%      |  |
| Aerosol phase function                       | 1%         |  |
| Wavelength depend. of aerosol scatt.         | 0.5%       |  |
| Atmospheric density profile                  | 1%         |  |
| Sub total (Atmosphere - sec. 3)              | 3.4%÷6.2%  |  |
| Absolute FD calibration                      | 9%         |  |
| Nightly relative calibration                 | 2%         |  |
| Optical efficiency                           | 3.5%       |  |
| Sub total (FD calibration - sec. 4)          | 9.9%       |  |
| Folding with point spread function           | 5%         |  |
| Multiple scattering model                    | 1%         |  |
| Simulation bias                              | 2%         |  |
| Constraints in the Gaisser-Hillas fit        | 3.5% ÷ 1%  |  |
| Sub total (FD profile rec sec. 5)            | 6.5% ÷5.6% |  |
| Invisible energy (sec. 6)                    | 3%÷1.5%    |  |
| Stat. error of the SD calib. fit (sec. 7)    | 0.7%÷1.8%  |  |
| Stability of the energy scale (sec. 7)       | 5%         |  |
| Total                                        | 14%        |  |

| Uncertainties entering into the SD calibration fit |                  |  |  |
|----------------------------------------------------|------------------|--|--|
| Aerosol optical depth                              | 3%÷6%            |  |  |
| Horizontal uniformity                              | 1%               |  |  |
| Atmosphere variability                             | 1%               |  |  |
| Nightly relative calibration                       | 3%               |  |  |
| Statistical error of the profile fit               | 5%÷3%            |  |  |
| Uncertainty in shower geometry                     | 1.5%             |  |  |
| Invis. energy (shower-to-shower fluc.)             | 1.5%             |  |  |
| Sub total FD energy resolution                     | <b>7% ÷ 8%</b>   |  |  |
| Statistical error of the $S(1000)$ fit [3]         | 12%÷3%           |  |  |
| Uncert. in lateral distrib. function [3]           | 5%               |  |  |
| shower-to-shower fluctuations [3]                  | 10%              |  |  |
| Sub total SD energy resolution                     | $17\% \div 12\%$ |  |  |

![](_page_71_Figure_0.jpeg)

- hard spectra: acceleration in rapidly rotating neutron stars, accretion disks with unipolar induction, etc.
   (high metallicity)
- good fit to Auger only above 5 EeV. Below
  - Galactic spectrum extending up to 5 EeV

BUT if light, disfavoured by anisotropy results, if heavy by  $X_{\text{max}}$ 

extraGal. (ad-hoc) sources injecting p, He. In agreement with Kascade-Grande and IceTop results
 BUT too much Fe at I EeV wrt Xmax result
## The energy estimation with SD



KIT Workshop, 21-23 September 2015

A.Castellina

## Composition issues from technical point of view



11