

Composition Results from Auger

Markus Roth Karlsruhe Institute of Technology (KIT) When ultra-high-energy cosmic rays arrive from interstellar space, they strike air molecules and produce a cascade of lower-energy particles.

The Pierre Auger Observatory

Fluorescence detector
4 sites: E>10¹⁸ eV
HEAT: E>10¹⁷ eV

Surface detector array

- I660 stations
- Grid of 1.5 km: 3000 km²
 E>10^{18.5} eV

Mean depth of shower profiles and shower-to-shower fluctuations as measure of composition

Average Shower Maximum

HEAT+Coihueco telescopes: extended field of view

Coihueco: $2^{\circ} - 30^{\circ}$ FoV in elevation 30° - 60° FoV in elevation HEAT:

60 F

50

40

30

20

10

0 🗄

elevation [deg]

slant depth [g/cm²]

azimuth [deg]

End to end cross-checks with MC simulations

Proton, Iron and 50:50 mixture, generated (lines) VS reconstructed (markers)

Generated and reconstructed MC data are compatible, with residual bias in the lowest energy bin: correction using half of the 50:50 mixture, plus a symmetric systematic uncertainty accounted

X_{max} systematic uncertainties & resolutions

- Reconstruction bias (only left) and detector resolution (right)
- Offset in time between SD-FD, calibration and telescopes alignment
- Analysis
- Atmospheric uncertainty in the geometry reconstruction and fluorescence light yield

Standard FD vs HEAT+Coihueco

Compatible within expected uncorrelated systematic uncertainties ($\sim 7 \text{ g/cm}^2$)

Average shower maximum and RMS

Dip model (ankle due to pure proton flux) seems to be ruled out

Statistical moments of $\langle ln\,A\rangle$

Average shower maximum

- EAS simulations are folded with detector response (det. resolution and bias introduced)
- Maximized statistics

- Unbiased estimate of X_{max} and higher moments
- Reduced statistics

Average shower maximum

- EAS simulations are folded with detector response (det. resolution and bias introduced)
- Maximized statistics

- Unbiased estimate of X_{max} and higher moments
- Reduced statistics

14

Average shower maximum

Pierre Auger and TA Collaborations, Proc. UHECR 2014, arXiv:1503.07540

Composition fit of the whole distribution

Pierre Auger Collaboration, PRD 90 (2014) 12, 122006

Composition Fit (X_{max} distribution)

Data available only up to < 5x10¹⁹ eV

Muon Production Depth distribution (MPD) in a nutshell

Geometric delay of arriving muons:

$$c \cdot t_{g} = \mathbf{l} - (z - \Delta)$$
$$= \sqrt{r^{2} + (z - \Delta)^{2}} - (z - \Delta)$$

Mapped to muon production depth:

$$z = \frac{1}{2} \left(\frac{r^2}{ct_{\rm g}} - ct_{\rm g} \right) + \Delta$$

Muon Production Depth distribution (MPD) in a nutshell

Muon Production Depth

Data set: 01/2004 - 12/2012 E > 10^{19.3} eV (more muons/event) Zenith angles [55°,65°] (low EM contamination) Distances from the core [1700 m, 4000 m] 481 events after quality cuts Systematic uncertainties: 17 g/cm²

Resolution: 100 (80) g/cm² at 10^{19.3} eV for p (Fe) 50 g/cm² at 10²⁰ eV

QGSJetII-04: data bracketed by predictions EPOS-LHC: predictions above data

Comparison of $\langle In A \rangle$ from X_{max}^{μ} and X_{max}

lnA (FD) from *Phys. Rev.* D 90 (2014) 12

QGSJetII-04: Compatible values within 1.5 σ EPOS-LHC: Incompatibility at a level of at least 6 σ

Hadronic interactions Data at variance with simulations

- $\langle R_{\mu} \rangle$ higher than MC iron predictions
- \bullet Tension between the X_{max} and muon measurements
- Older versions of QGSJet model are at odds with data taking into account the large systematic uncertainty

The average muon content and the muon gain with energy

Muon deficit from 30% to 80% at 10^{19} eV depending on the model: Best case for EPOS-LHC (minimum deviation of 1.4 σ)

Deviations from a constant proton (iron) composition observed at the level of 2.2 (2.6) σ

Summary

- X_{max}:
 - Measured in ~ 3 decades of energy down to 10^{17} eV
 - <InA> vs log₁₀(E/eV): Non-constant composition;
 Lightest at ~ 10^{18.4} eV
- Muon measurements:
 - Muon deficit in simulations
 - Strong model dependence
 - Conclusions on composition cannot be drawn but discrepancy with models large enough to put new constrains on hadronic interactions

None of the interaction models recently tuned to LHC data provides a consistent description of both the EM and muonic shower profiles as measured by Auger

Auger is going to extend the composition measurements up to highest energies by means of SD: AugerPrime ⇒ Refined analysis procedures needed

Upgrade of the Pierre Auger Observatory

- Additional scintillators (4 m²)
- Event-by-event mass estimate with 100% duty cycle instead of 15% for FD

Universality fitting procedure Fitting of a single event

Colored bands indicate corrections for up- and downstream asymmetry, e.g. different ΔX , ground screening, detector response

The world's largest cosmic ray observatory

About 500 members from 16 countries

Unambiguously detected flux suppression

Flux suppression due to GZK energy-loss?

Maximum-energy or GZK energy-loss? Hard injection spectrum?

Injection: Galactic composition with enhanced heavy elements

Injection: ~70% N or Si (almost no light elements)

Difference:	Scaling with charge Z or mass number A
Both scenarios:	Hard injection spectrum, $\gamma \approx$ -1 \ldots 1.7, and heavy source composition
	(Astrophysics: very exotic result!)

Flux suppression not universal?

Using same fluorescence yield and invisible energy + 7% shift

Spectrum working group report, UHECR14

Average shower maximum and RMS

