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The Pierre Auger
Observatory

Fluorescence detector
• 4 sites: E>1018 eV
• HEAT: E>1017 eV 

Surface detector array
• 1660 stations
• Grid of 1.5 km: 3000 km2 

E>1018.5 eV
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Primary Mass and Longitudinal Shower Profiles
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Primary mass and  
longitudinal shower profiles 
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Average Shower Maximum 
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Average Shower Maximum
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HEAT+Coihueco telescopes: extended field of view 
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HeCo (HEAT+CO): extended field of view
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Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 3/11

Coihueco:   2° - 30° FoV in elevation  
HEAT:       30° - 60° FoV in elevation  



End to end cross-checks with MC simulations
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End-to-End cross-check with MC simulations
Proton, Iron and 50:50 mixture, generated (lines) VS reconstructed (markers)

Generated and reconstructed are compatible, with a residual bias in the lowest energy bin:
correction using half of the 50:50 mixture (the largest),
plus a symmetric systematic uncertainties accounted

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 6/11

Proton, Iron and 50:50 mixture,  
generated (lines) VS reconstructed (markers) 

Generated and reconstructed MC data are compatible,  
with residual bias in the lowest energy bin:  
   correction using half of the 50:50 mixture,  
   plus a symmetric systematic uncertainty accounted 



Xmax systematic uncertainties & resolutions 
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hXmaxi systematic uncertainties & resolutions

I reconstruction bias (only left) and detector resolution (right)
I offset in time between SD-FD, calibration and telescopes alignment
I analysis
I atmospheric uncertainty in the geometry reconstruction and fluorescence light yield

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 7/11

• ︎ Reconstruction bias (only left) and detector resolution (right) 

• Offset in time between SD-FD, calibration and telescopes alignment

• Analysis

• Atmospheric uncertainty in the geometry reconstruction and fluorescence light yield



Standard FD vs HEAT+Coihueco 
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2 data set results. . .

p

Standard VS HeCo dataset

p

Compatibility inside the expected uncorrelated systematic uncertainties (⇠ 7 g cm�2)
Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 8/11

Compatible within expected uncorrelated systematic uncertainties (∼ 7 g/cm2) 



Average shower maximum and RMS
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Dip model (ankle due to pure proton flux)  
seems to be ruled out 

Pierre Auger Collaboration, to be presented at ICRC15

. . . merged together
Moments from flat acceptance data + exponential tails (⇤⌘) correction

(with Proton and Iron pure composition for EPOS-LHC, Sybill2.1, QGSJetII-04)
Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 9/11



Statistical moments of ⟨ln A⟩
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ln A moments: EPOS-LHC

Low energy: largest mass dispersion, dominated by intermediate and heavy primaries
High energy: from the lightest at ⇠ 1018.4 eV to heavier with less dispersion of masses.

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 10/11

ln A moments: QGSJetII-04

Low energy: largest mass dispersion, dominated by intermediate and heavy primaries
High energy: from the lightest at ⇠ 1018.4 eV to heavier with less dispersion of masses.

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 10/11

EP
O

S-L
HC 

Q
GSJe

tII
-0

4

Mean                                                    Variance



Average shower maximum
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Average Shower Maximum

Energy log10(E/eV)

<X
m
ax

>
[g
m
/c
m

2 ]

Proton

Iron

18.5 19 19.5 20
650

700

750

800

850
Data
QGSJETII(03
QGSJET(01c
SYBILL 2.1

Telescope Array Collaboration, APP 64 (2014) 49

E [eV]
1018 1019 1020

hX
m

ax
i
[g

/c
m

2 ]

650

700

750

800

850 data ± sstat
± ssys

EPOS-LHC
Sibyll2.1
QGSJetII-04

iron

proton

E [eV]
1018 1019 1020

s
(X

m
ax
)
[g

/c
m

2 ]

0

10

20

30

40

50

60

70

80

iron

proton

Pierre Auger Collaboration, PRD 90 (2014) 12, 122005

9/27

Telescope Array Collaboration, APP 64 (2014) 49                                               Pierre Auger Collaboration, PRD 90 (2014) 12, 122005 

Telescope array Auger

• Unbiased estimate of Xmax and  
higher moments

• Reduced statistics

• EAS simulations are folded with detector  
response (det. resolution and bias introduced)

• Maximized statistics



Average shower maximum
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Average Shower Maximum
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Telescope array Auger

Telescope Array Collaboration, APP 64 (2014) 49                                               Pierre Auger Collaboration, PRD 90 (2014) 12, 122005 

• Unbiased estimate of Xmax and  
higher moments

• Reduced statistics

• EAS simulations are folded with detector  
response (det. resolution and bias introduced)

• Maximized statistics



Average shower maximum

15
Pierre Auger and TA Collaborations, Proc. UHECR 2014, arXiv:1503.07540

Average Shower Maximum
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preliminary

h�i = (2.9 ± 2.7 (stat.) ± 18 (syst.)) g/cm2

Pierre Auger and TA Collaborations, Proc. UHECR 2014, arXiv:1503.07540 10/27

⟨∆⟩ = (2.9 ± 2.7 (stat.) ± 18 (syst.)) g/cm2

TA data from  
MD telescopes 
 
Parameterized  
Auger data  
folded with the  
MD acceptance 

MD = Middle Drum  
(site of one telescope station)



Composition fit of the whole distribution
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Average Shower Maximum

Telescope Array Collaboration, APP 64 (2014) 49

E [eV]
10

18

10

19

10

20

hX
m

a
x

i
[g

/
c
m

2

]

650

700

750

800

850

data ± s
stat

± s
sys

Sibyll2.1

i

r

o

n

p

r

o

t

o

n

E [eV]
10

18

10

19

10

20

s
(X

m
a
x

)
[g

/
c
m

2

]

0

10

20

30

40

50

60

70

80

iron

proton

Pierre Auger Collaboration, PRD 90 (2014) 12, 122005

9/27

 0

 100

 200

 300

 400

 500

 600

 

 

 

 

 

 

 

 500  600  700  800  900  1000
Xmax  [g/cm2]

EPOS-LHC
log(E/eV) = 17.8-17.9

p = 0.769

p.
d.

f. 
[a

rb
. u

ni
ts

]



Composition Fit (X
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distribution)
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Composition Fit (Xmax distribution)

17
Pierre Auger Collaboration, PRD 90 (2014) 12, 122006

Data available 
only up to 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Shower observables  
recorded at Auger
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Measuring muons with Auger SD
The muon content of EAS is sensitive to the primary composition and to the hadronic interaction properties

FD

SD

Pierre Auger Coll., JCAP 1408 (2014) 019

EM/μ signal ratio

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 3

➤ In inclined showers, the EM component is largely absorbed before reaching 
the ground

➤ The EM signal decreases with the distance from the core

Measuring muons with Auger SD
The muon content of EAS is sensitive to the primary composition and to the hadronic interaction properties

FD

SD

Pierre Auger Coll., JCAP 1408 (2014) 019

EM/μ signal ratio

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 3

➤ In inclined showers, the EM component is largely absorbed before reaching 
the ground

➤ The EM signal decreases with the distance from the core



Muon Production Depth  
distribution (MPD) in a nutshell

20

MPD Distributions
33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
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Figure 2: Real reconstructed MPD, � = (59.06 ± 0.08)◦
and E = (92 ± 3) EeV, with the fit to a Gaisser-Hillas
function.

is not carefully chosen. Therefore the selection of the dis-
tance cut must be a trade off between the resolution of the
reconstructed MPD and the number of muons being ac-
cepted into such reconstruction [8]. We use Monte Carlo
simulations to choose the optimal value for rcut . To build
the MPD, we consider only those detectors whose distance
to the shower core is larger than 1700 m, regardless of the
shower energy. Choosing an rcut which is independent of
energy implies that any difference in resolution that we
find for different energies will be a consequence mainly of
the different number of muons detected at ground. To es-
timate the impact that the distance cut and the undersam-
pling in r have on the determination of Xµ

max, we have stud-
ied the variation of Xµmax as a function of rmax (upper limit
of the distance interval [rcut , rmax] used to integrate the
MPD). Our simulations show that the variation of the Xµ

max
value amounts to about 10 g cm−2 per km shift in rmax.
The fact that in the selected data we do not use triggered

stations further than∼4000 m implies that we build MPDs
by counting muons at ground in the distance range 1700 m
≤ r ≤ 4000 m. The MPD for a single detector is obtained
as the average of the three MPDs that each PMT yields.
For each event, the final MPD is obtained by adding the
individual MPDs observed by each of the selected surface
detectors. Figure 2 shows the reconstructed MPD for one
of our most energetic events.
We select longitudinal profiles measured using a simple
set of criteria: a) Trigger cut.We select EAS that fulfill a
T5 trigger condition which requires that the detector with
the highest signal has all 6 closest neighbours operating; b)
Energy cut.We restrict our analysis to events with energy
larger than 20 EeV as for the less energetic events the
population of the MPD is very small, giving a very poor
determination of Xµmax; c) Xµ

max error. We reject events
whose relative error in Xµmax is bigger than a certain value
	max, an energy-dependent quantity (see Table 1) since the
accuracy in the estimation of Xµmax improves with energy.
This is a natural consequence of the increase in the number
of muons that enter the MPD as the energy grows.
The event selection efficiencies after the cut in Xµmax un-

certainty (cut c) are greater than 80%. Monte Carlo studies
have shown that the cuts chosen introduce a composition
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Figure 3: Evolution with energy of the RMS of the dis-
tribution [Xµmax (reconstructed) - Xµmax (true)]. The simula-
tions were made using the QGSJETII-0.4 [13] and EPOS-
LHC hadronic models for proton and iron nuclei for 55 ◦ ≤
� ≤ 65◦.

log10E/eV 	max(%)
[19.3, 19.4] 15
[19.4, 19.6] 11
[19.6, 19.7] 10
[19.7, 19.8] 8

> 19.8 7

Table 1: Maximum relative errors allowed in the estima-
tion of Xµmax. The value chosen for 	max ensures no selec-
tion bias between the different primary species.

bias smaller than 2 g cm−2 (included as a systematic uncer-
tainty). Also, as shown in Figure 3, the absolute value of
the mean bias in reconstructions is< 10 g cm−2, regardless
of the hadronic model, energy and atomic mass of the sim-
ulated primary. The resolution, understood as the RMS of
the distribution [Xµmax (reconstructed) - Xµmax (true)], ranges
from 100 (80) g cm−2 for proton (iron) at the lower ener-
gies to about 50 g cm−2 at the highest energy (see Figure 3).
The improvement of the resolution with energy is a direct
consequence of the increase in the number of muons.

4 Application to data
The data set used in this analysis comprises the events
recorded from 1-January 2004 to 31-December 2012. We
compute MPDs on an event-by-event basis. We have
shown that for events with zenith angles in the interval
55◦ ≤ � ≤ 65◦, the total MPD is simply the direct sum
of the individual MPDs given by the set of selected water-
Cherenkov detector traces. For this angular range, our ini-
tial sample is therefore made of 663 events.
To guarantee an accurate reconstruction of the longitu-

dinal profile we impose the selection criteria described in
Section 3. Table 2 summarises how the different cuts re-
duce the number of events.
The evolution of the measured ⟨Xµmax⟩ as a function of

energy is shown in Figure 4. The data have been grouped
in five energy bins of width 0.1 in log10(E/eV), except

✓ = 59.06± 0.08�

E = 92± 3EeV

Geometric delay of arriving muons: Mapped to muon production depth:

Inclined events to avoid  
EM contamination:

c · tg = l � (z ��)

=
p
r2 + (z ��)2 � (z ��)

z =
1

2

✓
r2

ctg
� ctg

◆
+�



Muon Production Depth  
distribution (MPD) in a nutshell
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Muon Production Depth
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fit: Gaisser–Hillas function

Muon Production Depth (MPD)

Analysis details:

➤ data set: 01/2004 - 12/2012
➤  E > 1019.3 eV (more muons/event)
➤  zenith angles [55°,65°] (low EM contamination)
➤  distances from the core [1700 m, 4000 m]
➤ 481 events after quality cuts
➤ systematic uncertainties: 17 g/cm2

➤ resolution:
100 (80) g/cm2 at 1019.3 eV for p (Fe) 
50 g/cm2 at 1020 eV

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 13

Example of a real event 
with: E = (33 ± 1) EeV

EPOS-LHC
30 EeV
55°-65°

Data set: 01/2004 - 12/2012  
E > 1019.3 eV (more muons/event)  
Zenith angles [55°,65°] (low EM contamination)  
Distances from the core [1700 m, 4000 m]  
481 events after quality cuts 
Systematic uncertainties: 17 g/cm2 

Resolution:  
100 (80) g/cm2 at 1019.3 eV for p (Fe)  
50 g/cm2 at 1020 eV 

Xμmax  vs. energy

➤ QGSJetII-04: data bracketed by predictions
➤ EPOS-LHC: predictions above data

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 14

QGSJetII-04: data bracketed by predictions  
EPOS-LHC: predictions above data 



Comparison of ⟨ln A⟩ from Xmax and Xmax 
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Comparison of lnA from Xμmax and Xmax
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➤ QGSJetII-04: compatible values within 1.5 σ
➤ EPOS-LHC: incompatibility at a level of at least 6 σ

see talk by T. Pierog on EAS and pion interactions (id=803)

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 15

QGSJetII-04:  Compatible values within 1.5 σ 
EPOS-LHC:  Incompatibility at a level of at least 6 σ 

μ



Muons in highly  
inclined events 
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The measured muon scale factor N19 with respect to muon reference 
density profiles is converted to

Analysis details:

➤ data set: 01/2004 - 12/2013
➤  E > 4 x 1018 eV (100% SD trigger)
➤  zenith angles [62°, 80°] (low EM contamination)
➤ 174 hybrid events after quality cuts
➤ systematic uncertainty on Rμ: 11%

reference function 
ρμ,19 (θ,ϕ,x,y)

p QGSJetII-03
E = 1019 eV
θ = 80°
Φ = 0°
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The measured muon scale factor N19 with respect to muon reference 
density profiles is converted to

Analysis details:

➤ data set: 01/2004 - 12/2013
➤  E > 4 x 1018 eV (100% SD trigger)
➤  zenith angles [62°, 80°] (low EM contamination)
➤ 174 hybrid events after quality cuts
➤ systematic uncertainty on Rμ: 11%

reference function 
ρμ,19 (θ,ϕ,x,y)

p QGSJetII-03
E = 1019 eV
θ = 80°
Φ = 0°

• Data set: 01/2004 - 12/2013

• E > 4 x 1018 eV  
(100% SD trigger) 

• Zenith angles [62°, 80°]  
(low EM contamination) 

• 174 hybrid events after quality cuts

• Systematic uncertainty on Rμ: 11% 

1019 1020

E/eV

1

10

R
µ

Fit: ⟨Rµ⟩ = a(E/1019 eV)b

174 Auger hybrid events

−1 0 1
(Rµ − ⟨Rµ⟩)/⟨Rµ⟩

0

15

30

45

ev
en

ts

stdev 0.20 ± 0.01

Muons in highly inclined events 

The number of muons per unit area at the ground level has a shape 
which is almost independent of energy, composition or hadronic model

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

1 km
2 km

3 km

16

4
1

0.25

MC: p QGSJET II-03
E = 1019 eV
θ = 80◦
φ = 0◦

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 5

The measured muon scale factor N19 with respect to muon reference 
density profiles is converted to

Analysis details:

➤ data set: 01/2004 - 12/2013
➤  E > 4 x 1018 eV (100% SD trigger)
➤  zenith angles [62°, 80°] (low EM contamination)
➤ 174 hybrid events after quality cuts
➤ systematic uncertainty on Rμ: 11%

reference function 
ρμ,19 (θ,ϕ,x,y)

p QGSJetII-03
E = 1019 eV
θ = 80°
Φ = 0°



Hadronic interactions  
Data at variance with simulations

25 Pierre Auger Collaboration, PRD91 (2015) 3, 032003                 
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Mean Muon Scale <Rμ>
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➤  <Rμ> higher than MC iron predictions

➤ tension between the Xmax and muon measurements 

➤ older versions of QGSJet model are at odds with the data taking into account the large systematic uncertainty

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 6

• ⟨Rμ⟩ higher than MC iron predictions

• Tension between the Xmax and muon measurements

• Older versions of QGSJet model are at odds with data  
taking into account the large systematic uncertainty 



The average muon content and  
the muon gain with energy 
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The average muon content and the muon gain with energy

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 7

➤ muon deficit from 30% to 80% at 1019 eV depending on the model: 
best case for EPOS-LHC (minimum deviation of 1.4 σ)

➤ deviations from a constant proton (iron) composition observed at the level of 2.2 (2.6) σ

The average muon content and the muon gain with energy

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 7

➤ muon deficit from 30% to 80% at 1019 eV depending on the model: 
best case for EPOS-LHC (minimum deviation of 1.4 σ)

➤ deviations from a constant proton (iron) composition observed at the level of 2.2 (2.6) σ

Muon deficit from 30% to 80% at 1019 eV  
depending on the model:  
Best case for EPOS-LHC  
(minimum deviation of 1.4 σ) 

Deviations from a constant  
proton (iron) composition  
observed at the level of 2.2 (2.6) σ 



Muon number in hybrid events  
with θ<60° 
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➤  No energy rescaling is needed

➤  The observed muon signal is a factor 1.3 to 1.6 larger than predicted by models

➤ Smallest discrepancy for EPOS-LHC with mixed composition, at the level of 1.9 σ

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 10

Auger Preliminary 2015
Data set: 01/2004 - 12/2012

• E = 1018.8 - 1019.2 eV

• Zenith angles [0°, 60°]

• 411 hybrid events after  
quality cuts

• Systematic uncertainties  
on RE and Rhad: 10 % 
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 Rμ

Summary
• Xmax: 

• Measured in ∼ 3 decades of energy down to 1017 eV 

• ⟨lnA⟩ vs log10(E/eV): Non-constant composition; 
Lightest at ∼ 1018.4 eV 

• Muon measurements: 

• Muon deficit in simulations

• Strong model dependence

• Conclusions on composition cannot be drawn 
but discrepancy with models  large enough to put new 
constrains on hadronic interactions 

28

None of the interaction models recently tuned to LHC data 
provides a consistent description of both the EM and muonic 
shower profiles as measured by Auger 

Comparison of lnA from Xμmax and Xmax
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➤ QGSJetII-04: compatible values within 1.5 σ
➤ EPOS-LHC: incompatibility at a level of at least 6 σ

see talk by T. Pierog on EAS and pion interactions (id=803)

Laura Collica - Measurement of the muon content in air showers at the Pierre Auger Observatory 15

 Xmax
μ

ln A moments: EPOS-LHC

Low energy: largest mass dispersion, dominated by intermediate and heavy primaries
High energy: from the lightest at ⇠ 1018.4 eV to heavier with less dispersion of masses.

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 10/11

 Xmax

 Xmax

Auger is going to extend the composition measurements  
up to highest energies by means of SD: AugerPrime  

⇒ Refined analysis procedures needed



Upgrade of the  
Pierre Auger Observatory 
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3.3. SCINTILLATOR DETECTOR PERFORMANCE CONSIDERATIONS 35

Figure 3.5: Xµ
max distribution reconstructed at 10 EeV for proton and iron showers simulated with

EPOS-LHC and QGSJetII-04 (left), and Xmax-Xµ
max correlation obtained using SSD reconstructed val-

ues of Xµ
max (right). Some small systematics can be seen for low Xmax (corresponding to lower energy

EAS).
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Figure 3.6: Left panel: The reconstructed Xmax compared with the true Xmax as a function of energy.
Error bars represent the RMS of the distributions. Right panel: The reconstructed Nµ compared with
the true Nµ as a function of energy. Error bars represent the RMS of the distributions. The resolutions
are obtained from parameterizations and interpolations of EPOS-LHC simulations at fixed energies
and zenith angles and are shown for events up to 60�.

Once the Xµ
max-Xmax relationship is determined from the calibration described in the pre-

vious section, the remaining composition sensitive parameters to fit are just Xmax and Nµ.
In order to properly determine the resolution of the SSD, the Monte Carlo simulations were
treated as real data, and the Xµ

max-Xmax relationship determined with reconstructed values.
The events were then reconstructed again using this calibration and the resolution on Xmax
and Nµ, and systematic biases, were derived. Figure 3.6 shows both resolution and bias for
both variables as a function of composition and energy. Biases are small, below 15 g/cm2 for
Xmax and 5% for Nµ, and the resolution is about 40 g/cm2 at 10 EeV, down to 25 g/cm2 at
100 EeV for Xmax, and 15% at 10 EeV down to 8% at 100 EeV for Nµ. Of interest is also the
energy resolution for the reconstruction of around 10% at 10 EeV down to 7% at 100 EeV.
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Figure 3.6: Left panel: The reconstructed Xmax compared with the true Xmax as a function of energy.
Error bars represent the RMS of the distributions. Right panel: The reconstructed Nµ compared with
the true Nµ as a function of energy. Error bars represent the RMS of the distributions. The resolutions
are obtained from parameterizations and interpolations of EPOS-LHC simulations at fixed energies
and zenith angles and are shown for events up to 60�.

Once the Xµ
max-Xmax relationship is determined from the calibration described in the pre-

vious section, the remaining composition sensitive parameters to fit are just Xmax and Nµ.
In order to properly determine the resolution of the SSD, the Monte Carlo simulations were
treated as real data, and the Xµ

max-Xmax relationship determined with reconstructed values.
The events were then reconstructed again using this calibration and the resolution on Xmax
and Nµ, and systematic biases, were derived. Figure 3.6 shows both resolution and bias for
both variables as a function of composition and energy. Biases are small, below 15 g/cm2 for
Xmax and 5% for Nµ, and the resolution is about 40 g/cm2 at 10 EeV, down to 25 g/cm2 at
100 EeV for Xmax, and 15% at 10 EeV down to 8% at 100 EeV for Nµ. Of interest is also the
energy resolution for the reconstruction of around 10% at 10 EeV down to 7% at 100 EeV.

Upgrade of the Pierre Auger Observatory

additional scintillators (4 m2)

! event-by-event mass estimate
with 100% duty cycle
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• Additional scintillators (4 m2)
• Event-by-event mass estimate  

with 100% duty cycle instead of 15% for FD

Xmax reconstruction

Nµ reconstruction



Universality fitting procedure    
Fitting of a single event
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The world‘s largest cosmic ray observatory
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About 500 members from 16 countries

Argentina
Australia
Brazil
Colombia*
Czech Republic
France
Germany
Italy
Mexico
Netherlands
Poland
Portugal
Romania
Slovenia
Spain
USA

*Associated

• Full members

• Associate member
★ Auger site



Key results of the Auger Observatory

1. Very strong flux suppression

2. Top-down scenarios ruled out

3. Challenging level of isotropy  
    (but ~7% dipole at E > 8x1018 eV)

(see Auger contributions and highlight talk by Piera Ghia)

10 CHAPTER 2. SCIENTIFIC ACHIEVEMENTS AND GOALS
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Figure 2.5: Large scale anisotropy search. Left: 99% limits on the dipole anisotropy in the equatorial
plane for the collected statistics until end of 2014 (dashed line) and values of the dipole amplitude
d?. Right: estimated phase angles. The red points of the equatorial phase are from the analysis of the
750 m array. The data shown is an update of the analyses [15, 88], to be published at ICRC 2015.
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Figure 2.6: Regions of over-density observed after ⇠20�-smearing of the arrival directions of particles
with E > 5.5⇥1019 eV. The results from the northern hemisphere are from the TA Collaboration [91].

want to mention the 15� region of over-density observed around the direction of Centau-
rus A [21]. Although not being a statistically significant excess beyond 3s, it is interesting
to note that the TA Collaboration has recently reported a “hot spot” of similar intermediate
angular scale [91], see Fig. 2.6.

2.1.5 Air shower and hadronic interaction physics

The depth of shower maximum is directly related to the depth of the first interaction of the
cosmic ray in the atmosphere [92]. Based on this correlation, the proton-air cross section has
been measured at 57 TeV c.m.s. energy using hybrid data of the Auger Observatory [24]. Ap-
plying the Glauber approximation [93] this cross section can be converted to an equivalent
(inelastic) proton-proton cross section, see Fig. 2.7. The cross section is found to be consis-
tent with model extrapolations that describe the LHC data, which were becoming available

2

11

Combined spectrum

Flux normalisations: SD-1500 m vertical: 5.7%; SD-1500 m inclined: -0.1%; SD-750 m: 1.8%; Hybrid: -5.8%  
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Pierre Auger Collaboration, Phys. Rev. D90 (2014) 122006

4. Unexpected mass composition or change  
    of hadronic interactions for E > 1018.5 eV

5. Air showers have surprisingly high number 
    of muons (not yet understood)

Composition Fit (Xmax distribution)

35
Pierre Auger Collaboration, PRD 90 (2014) 12, 122006

Data available 
only up to 
< 5x1019 eV

Hic sunt  
leones



Unambiguously detected flux suppression 
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Flux suppression due to GZK energy-loss? 
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Spectral information is not enough to decide upon
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FIG. 9. The proton-proton cross section vs. the center
of mass energy result of this work, including the statisti-
cal (outer/thinner) and systematic (inner/thicker) error bars.
The p̄p and the pp data are shown in smaller darker circles
and square symbols consecutively. The result of this work is
shown in comparison to previous work by cosmic rays detec-
tors[ [1], [27], [29], [2]]. The dashed curve is the QCD inspired
fit [9]. This plot is adapted from [9].

accelerators.The value of σtot
p−p was determined to be

170+48
−44[Stat.]±

+17
−19 [Sys.] mb.

While the events used in this analysis were collected
with MD-SD part of the detector, future cross section
results, using thoroughly analysed events could be per-
formed using LR and BRM data, and ultimately with the
full detector. LR and BRM are the fluorescence detectors
closer in distance to the SD and therefore we could extend
the energy range of the collected data down to 1 EeV .
This will enable us to study the measurement down to
1 EeV with higher statistical power which would allow us
to constrain the available high energy model cross section
predictions.
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make a statement on the functional form.
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“Galactic” (Allard-type) scenario: fixed k = 5

γ log10 Ecut(Fe) J0 H(%) He(%) N(%) Si(%) Fe(%) χ2 /dof
k=5, 4 m 1.25 19.9 40.4 74.3 14.8 8.8 - 2.0 57.19/29

colour code for the spectrum plots:
“4 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 26 (green) and 27 ≤ A ≤ 56 (red)
“5 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 22 (green), 23 ≤ A ≤ 38 (violet), 39 ≤ A ≤ 56 (red)

18 18.5 19 19.5 20 20.5

3710

3810

(E/eV)
10

log

]-1
 y

r
-1

 sr
-2

 k
m

2
J [

eV
3 E

(E/eV)
10

log
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

]
-2

> 
[g

 c
m

m
ax

<X

600

650

700

750

800

850

900
H
He
N
Fe

EPOS 1.99

(E/eV)
10

log
18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20

]
-2

) [
g 

cm
m

ax
(X
σ

0

10

20

30

40

50

60

70

H

He

N
Fe

5/15

expo 2

k=5, 4 masses

“Free mass fractions” (Hooper-Taylor-type) scenario

γ log10 Ecut(Fe) J0 H(%) He(%) N(%) Si(%) Fe(%) χ2 /dof
4 masses 1.00 20.2 6.9 0.5 0. 96.7 - 2.7 23.39/26

colour code for the spectrum plots:
“4 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 26 (green) and 27 ≤ A ≤ 56 (red)
“5 masses”: A = 1 (blue), 2 ≤ A ≤ 4 (gray), 9 ≤ A ≤ 22 (green), 23 ≤ A ≤ 38 (violet), 39 ≤ A ≤ 56 (red)
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Protons injected from sources

Secondary  
protons

Allard et al. 2011

Hooper-Taylor et al. 2012

(Sergio Petrera et al.)

Fe

Fe

N

N

p

p

Difference:        Scaling with charge Z or mass number A  
Both scenarios: Hard injection spectrum, γ≈ -1 … 1.7, and heavy source composition  
                          (Astrophysics: very exotic result!)

(Shaham & Prian, Phys. Rev. Lett. 110, 2013)

Injection: ~70% N or Si (almost no light elements)
Injection: Galactic composition with 
              enhanced heavy elements

He

He

39

Maximum-energy or GZK energy-loss?
Hard injection spectrum?

Emax=Z x 4 EeV



Flux suppression not universal?
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UHE Energy Spectrum
Normalizing the energy spectra (constant energy shift)
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Average shower maximum and RMS

44

Xmax in almost three decades of energy with HEAT Alessio Porcelli

(a) hXmaxi systematic. (b) Resolution and its systematic uncertainties.

Figure 2: Systematic uncertainties of hXmaxi and resolutions.

(a) Xmax average. (b) Xmax fluctuation.

Figure 3: Firsts two moments of the Xmax distribution in almost 3 decades of energy with systemat-
ics uncertainties (gray caps). The values from air shower simulations using the hadronic
interaction models (EPOS-LHC, QGSJetII-04, Sibyll2.1) are shown for pure proton and
pure iron compositions.

weight”, which uses simulations to understand how much the distorted tails must be up-weighted66

to restore their unbiased distribution [?].67

The final step to unbias the events is to subtract, from the data sample, the reconstruction68

bias in energy and Xmax, and correct the s(Xmax) subtracting in quadrature the detector resolution69

(??). Reconstruction biases and detector resolution are estimated through the simulations. To be70

mentioned a different reconstruction bias in energy for the two dataset: HeCo has a ⇠ 4% larger71

bias than Standard due different reconstruction technique. Such a difference will be eliminated in72

the next future: studies are ongoing in such a direction.73

After the whole analysis procedures, the firsts two moments of the Xmax distributions (energy74

binned) are presented in ??. The systematic uncertainties considered (?? for the hXmaxi and ??75

for the s(Xmax)) are deep studies related to the atmospheric uncertainty in the geometry recon-76
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Dip model (ankle due to pure proton flux)  
seems to be ruled out 
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