Performance and future Evolution of EPOS

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

K. Werner, B. Guiot, Subatech, Nantes, France Iu. Karpenko, BITP, Kiev, Ukraine

HAP Workshop, Karlsruhe, Germany September the 18th 2015

EPOS Scheme

General case valid for all systems : Collective hadronization if enough particles are produced !

Outline

- EPOS basic principles
- EPOS performances
 - accelerator data
 - ➡ cosmic ray (CR) data
- New developments
 - EPOS 3
- Summary

The EPOS Model

EPOS is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !

EPOS designed to be used for particle physics experiment analysis (SPS, RHIC, LHC)

Parton-Based Gribov-Regge Theory

- Energy sharing at the cross section level
 - Energy shared between cut and uncut diagrams (Pomeron)
 - Reduced number of elementary interactions
 - Generalization to (h)A-B
 - Particle production from momentum fraction matrix (Markov chain metropolis)

H. J. Drescher et al, Phys. Rept. 350 (2001) 93-289;

Non-linear effect (saturation) absorbed in modified vertex functions

HAP – Sept 2015

EPOS – non-linear effects

Well known problem with pQCD based Pomerons

➡ total cross-section too high : multiple scattering required

in EPOS <Pomerons> fixed by b-dep of Pomeron amplitude (slope)

- rightarrow for historical reason minimum scale Q_0^2 is free but fixed (no energy or b dependence)
- effective coupling introduced to mimic effect of enhanced diagrams and reduce crosssection (screening effect) to get cross-section AND multiplicity right in p-p, p-A and AA.

HAP – Sept 2015

Low Energy Data

Excellent results for soft physics

T. Pierog, KIT - 7/20

NA22 π -p Data

All resonances well described (remnant excitation)

Excellent results for soft physics

- cross-section, multiplicity, pt distributions, identified spectra, energy flow, etc ...

Excellent results for soft physics

- cross-section, multiplicity, pt distributions, identified spectra, energy flow, etc ...

Excellent results for soft physics

- cross-section, multiplicity, pt distributions, identified spectra, energy flow, etc ...
- energy evolution
- best predictions at midrapidity
- problem with diffraction
- different results with forward trigger
- problem with high p_t in particular for pA

T. Pierog, KIT - 11/20

Pierre Auger Observatory: Xmax

Mass evolution

 \Rightarrow <lnA> = average (log) mass and σ^2 (lnA) is the variation of the mass (0=constant mass)

test consistency of hadronic models (+ tests with muons see other talks)

Pierre Auger Observatory: MPD

Measurement of the depth of the maximum muon production

- \blacksquare mass estimator based on muon production: result should be between p and Fe
- ➡ should give the same mean logarithmic mass than the one from Xmax for the same model
- problem with EPOS appears after corrections motivated by LHC data
 - Iower diffractive mass motivated by rapidity gap cross-section !
 - strong influence of pion diffraction on muon production evolution
 - additional data needed to improve pion diffraction (neutron exchange at LHC ?)

Attempt to change MPD in EPOS

CR Data

New developments

New <X^µ_{max}>

Not as measured ... use EPOS 1.99 as reference ...

To be confirmed by real MPD simulations...

CR Data

New developments

Extrapolation and LHC Results

T. Pierog, KIT - 16/20

Preliminary Results : Factorization in pA

- **Goal:** same excellent results for soft physics
 - cross-section, multiplicity, etc ...

HAP – Sept 2015

mass splitting

New developments

EPOS 3 with Full Hydro

With Pomeron dependent saturation scale and full 3D hydro

- \rightarrow restored binary scaling for high p_{t}
- intermediate p, due to flow

For EAS simulations, possibility to use effective flow as in EPOS LHC. Full hydro too slow and not necessary for CR.

HAP – Sept 2015

T. Pierog, KIT - 18/20

Data for π +C

Summary

EPOS LHC

- EPOS is based on pertubative QCD and Gribov-Regge theory with a unique treatment of energy conservation in cross-section calculation, free remnants and collective hadronization in case of high density core formation
- early LHC tune of EPOS 1.99, only minor changes
- \rightarrow very nice description of most of particle distributions at mid-rapidity and p_t<5GeV/c
- \rightarrow problem at high p_t (in particular for pA) and new data on diffraction not well reproduced
- best description of PAO data with the exception of MPD which are very sensitive to pion interactions

EPOS 3 (2016)

- \Rightarrow introduce saturation scale Q_s^2 COMPUTED Pomeron-by-Pomeron.
- impose factorization and binary scaling for hard processes above saturation scale
- good initial conditions for event-by-event 3D full hydro calculation or fast effective hydro
- production (and interaction) of heavy flavor particles (charm and beauty)
- more complete treatment of diffraction taking into account latest LHC data
- description of (available) NA61 data

Excellent results for soft physics

- cross-section, multiplicity, pt distributions, identified spectra, energy flow, etc ...

PAO: Direct Muon Measurement

Old showers contain only muon component

- direct muon counting with very inclined showers (>60°) by comparing to simulated muon maps (geometry and geomagnetic field effects)
- EM halo accounted for
- correction between true muon number and reconstructed one from map by MC (<5%)

 R_{μ}/E_{FD} in energy bins

HAP – Sept 2015

T. Pierog, KIT - 22/20

CR Data

KASCADE-Grande

Muon density indicates a high number of muon

- EPOS LHC consistent with data
- attenuation length smaller than in data (like other models)

Elementary scatterings - flux tubes

same energy sharing between the parallel scatterings is taken into account for cross section and particle production

multiplicity evolution fixed by cross-section

many elementary collisions happening in parallel

elementary scattering = "parton ladder" + soft component

- Parton evolutions from the projectile and the target side towards the center (small x)
 - Evolution equation

DGLAP

Parton ladder = quasilongitudinal color field ("flux tube")

relativistic string

- Intermediate gluons
 - kink singularities in relativistic strings
- Fragmentation : production of quark-antiquark pairs

fragments – identified with hadrons

Parton-based Gribov-Regge Theory, H. J. Drescher, M. Hladik, S. Ostapchenko, T.Pierog, and K. Werner, Phys. Rept. 350 (2001) 93-289;

EPOS : Pomeron definition

Semi-hard Pomeron : $(\overset{\wedge}{s=x^+x^-s})$

Test of semi-hard Pomeron with DIS: (Parton Distribution Function from dHERA)

- Theory based Pomeron definion
 - pQCD based (DGLAP and Born)
 - large increase at small x (without saturation)
 - External pdf only for valence quark
 - F2 from HERA used to fix parameters for sea quarks and gluons

EPOS Parton Distribution Function

Cross Section Calculation : EPOS

- Gribov-Regge but with energy sharing at parton level (Parton Based Gribov Regge Theory)
- amplitude parameters fixed from QCD and pp cross section (semi-hard Pomeron)
- cross section calculation take into account interference term

$$\sigma_{\rm ine}(s) = \int d^2 b \left(1 - \Phi_{\rm pp}(1, 1, s, b)\right).$$

$$\Phi_{\rm pp}\left(x^+, x^-, s, b\right) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\}$$
$$\times F_{\rm proj}\left(x^+ - \sum x_\lambda^+\right) F_{\rm targ}\left(x^- - \sum x_\lambda^-\right).$$

can not use complex diagram with energy sharing: non linear effects taken into account as correction of single amplitude G

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

➡ m cut Pomerons from :

$$\Omega_{AB}^{(s,b)}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+,x_{k,\mu}^-,s,b_k) \right\} \Phi_{AB} \left(x^{\text{proj}},x^{\text{targ}},s,b \right)$$

m and X fixed together by a complex Metropolis (Markov chain)

➡ 2m strings formed from the m elementary interactions

energy conservation : energy fraction of the 2m strings given by X

- consistent scheme : energy sharing reduce the probability to have large m

Consistent treatment of cross section and particle production: number <u>AND</u> distribution of cut Pomerons depend on cross section

Number of cut Pomerons

Fluctuations reduced by energy sharing (mean can be changed by parameters)

CR Data

Diffraction in PBGRT

- Using the same formalism
 - Diffraction from an additional diagram

Same form as soft (Regge pole) but with different amplitude and width

Low mass and high mass diffraction from the same diagram

- Parameters extracted from single diffractive (SD) cross-section
- Events with only "diff" type diagrams are diffractive

CR Data

Low Mass Diffraction

HAP – Sept 2015

High Mass and Central Diffraction

Same scheme but with particle production

- Do not change cross-section
- If only non-diffractive Pomeron are present, no mass given to remnant.
- 0, 1 or 2 rapidity gap depending on diagram exchange

Projectile and target not excited : 2 rapidity gaps

> Only projectile not excited : 1 rapidity gaps

- Additional multiplicity contribution in ND events
- Work in progress

Test of string fragmentation with LEP data

HAP – Sept 2015

T. Pierog, KIT - 33/20

Core Effect on Total Multiplicity

T. Pierog, KIT - 34/20

Fixed Q_0^2 (old)

- Excellent results for soft physics
 - cross-section, multiplicity, etc ...

Variable Q_s²(s,x,b,A) (new)

Inspired by CGC

different saturation scale event-by-event and even Pomeron-by-Pomeron depending on momentum fraction x, impact parameter b, squared energy s or number of participants.

T. Pierog, KIT - 36/20

CR Data

Predicted Q_s²(s,x,b,A)

Inspired by CGC

different saturation scale event-by-event and even Pomeron-by-Pomeron depending on momentum fraction x, impact parameter b, squared energy s or number of participants.

High Density Core Formation

- Heavy ion collisions or very high energy proton-proton scattering:
 - the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : core

- Each string splitted into a sequence of string segments, corresponding to widths $\delta \alpha$ and $\delta \beta$ in the string parameter space
- If energy density from segments high enough
 - segments fused into core : hydrodynamical evol.
- If low density (corona)
 - segments remain hadrons

Hydro (Yuri Karpenko)

- After core formation, use it as initial conditions for hydro evolution using Lattice QCD EoS
- Similar Stewart formulation, $\eta \tau$ coordinates, $\eta/S = 0.08$, ζ/S = 0

- Freeze out at 164 MeV: Cooper-Frye, equilibrium distr
 Hadronic afterburner:
 - UrQMD (Marcus Bleicher, Jan Steinheimer) : implementing new update (Ω)

Flow : pPb vs PbPb in Data

Very similar behavior observed in data in both systems \rightarrow very little change of v2 with multiplicity; high v2 at high pt; different shapes small increase of v3 with multiplicity; low v3 at high pt; same shape N 0.3 0.3 2 Ntrack 120-150 (r) pPb Ntrack 120-150 (r) PbPb Ntrack 150-185 (g) Ntrack 150-185 (g) 0.2 0.2 v2 0.10.10 0 charged ptls data CMS charged ptls data CMS -0.1-0.12 4 6 2 p_t (GeV/c) p_t (GeV/c) _ح 0.15 ^م 0.15 Ntrack 120-150 (r) pPb Ntrack 120-150 (r) PbPb Ntrack 150-185 (g) Ntrack 150-185 (g) 0.10.10.05 0.05 v3 0 0 data CMS data CMS -0.05-0.05charged ptls charged ptls -0.1-0.12 0 4 2 4 6 p_t (GeV/c) p_t (GeV/c)

HAP – Sept 2015

T. Pierog, KIT - 40/20

Flow : pPb vs PbPb in Simulations

- Very similar behavior than in data in both systems
 - \rightarrow very little change of v2 with multiplicity ; high v2 at high pt ; different shapes
 - \blacksquare small increase of v3 with multiplicity ; low v3 at high pt ; same shape

HAP – Sept 2015

T. Pierog, KIT - 41/20

Origin of the Particles

- Multiplicity strongly correlated to the number of Pomeron
 - common pPb/PbPb multiplicity (Ntrack>100) corresponds to very different geometry
 - high density rare events in pPb (lot of MPI)
 - peripheral collisions with larger number of binary collisions

Origin of the Particles

- Multiplicity strongly correlated to the number of Pomeron
 - common pPb/PbPb multiplicity (Ntrack>100) corresponds to very different geometry
 - high density rare events in pPb (lot of MPI)
 - peripheral collisions with larger number of binary collisions

Origin of the Radial Flow

Multiplicity strongly correlated to the number of Pomeron

- common pPb/PbPb multiplicity (Ntrack>100) corresponds to very different geometry
- Radial flow much higher in pPb than in PbPb (for same mult.)

pPb as high as in PbPb central collisions

Origin of the Higher Order Flows

Multiplicity strongly correlated to the number of Pomeron

- common pPb/PbPb multiplicity (Ntrack>100) corresponds to very different geometry
- Radial flow much higher in pPb than in PbPb (for same mult.)
- Excentricity higher for v2 and v3
 - Higher excentricity compensate the lower flow to get similar magnitude in v2 and v3 !

CR Data

Mass Splitting

Mass splitting well reproduce using hydro for both pPb and PbPb

Higher in pPb than in PbPb (larger radial flow)

CR Data

Remnants

Forward particles mainly from projectile remnant

Forward hadronization from remnant :

- At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at midrapidity (baryon free)

Remnant considered as universal object : same behavior at low or high energy

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
 - Baryon stopping
- Baryon number can be added to pion/kaon remnant :
 - Baryon acceleration

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

CR Data

Forward Baryons (low energy)

- Large differences between models
- Need a new remnant approach for a complete description (EPOS)
- Problems even at low energy
- No measurement at high energy !

Without remnant, string fragmentation has to be changed for baryon production

Core Effect on Particle Yield

Core hadronization change particle ratio

heasier to produce strange baryons

HAP – Sept 2015

T. Pierog, KIT - 51/20

EPOS LHC

- Detailed description can be achieved
 - identified spectra
 - → p_t behavior driven by collective effects (flow)

EPOS LHC

- Detailed description can be achieved
 - → p_t behavior driven by collective effects (flow)
 - particles with $p_t \sim 0.5$ GeV/c boosted up to $p_t=2-3$ GeV/c
 - igh p_t particles ($p_t \sim 10$ GeV/c) suppressed by energy loss in fluid
 - spectrum dominated by string (jet) particles only for p_t > 5 GeV/c

p-Pb : Increased Effects

Flow depends on N_{ch}

large N_{ch} more often in pPb than in pp but same strength for same N_{ch}

 R_{nPh} mass dependent (like in dAu @ RHIC) : for $p_t < 6$ GeV/c, $R_{nnh} = 1$ by chance ?

HAP – Sept 2015

Radius of Particle Emission

Bose-Einstein Correlations

Consequences for Bose-Einstein correlations

Radii R from exponential fit. KT1= [100, 250], KT3= [400, 550], KT5= [700, 1000]

ALICE data.

PbPb @ LHC

T. Pierog, KIT - 57/20

jets in PbPb @ LHC

Correlations in PbPb@LHC

Fourier coefficient for most central events

CR Data

New developments

High Energy Hadronic Interactions : HEP view

Problem with some observables (UE, <pt>, ratios ...)

High Energy Hadronic Interactions : EPOS LHC

- Local high energy densities have different hadronization :
 - Microcanonical decay
 - flow

General case : valid for pp if enough particles are produced !