Performance and future evolution of QGSJET Sergey Ostapchenko Frankfurt Institute for Advanced Studies

HAP Workshop on CR Composition

[]

September 21-23

Outline of the talk

- **1** Overview of the model & recent udates
- $\mathbf 2$ Forward $\mathsf p^0$ production & π-exchange mechanism in πp collisions
- **3** Inelastic diffraction: model predictions, LHC data, and EAS characteristics
- \bullet LHCf data on forward spectra of neutrons and $\pi^0\colon$ model-based analysis

3 Summary

High energy collisions $=$ multiple scattering processes

- many parton cascades in parallel
- **•** typically small momentum transfer along the cascades

ライミド イ

つくい

High energy collisions $=$ multiple scattering processes

- many parton cascades in parallel
- **•** typically small momentum transfer along the cascades

$RFT: Pomerons = 'elementary' cascades$

- e.g. elastic amplitude
- **•** requires Pomeron amplitude & Pomeron-hadron vertices

െ പ

െ പ

QGSJET-II-04: full resummation of PP-interactions [SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

nar

QGSJET-II-04: full resummation of PP-interactions [SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

Nonlinear processes: Pomeron-Pomeron interactions (scattering of intermediate partons off the proj./target hadrons & off each other)

- **•** partial cross sections for various final states (including diffractive): from unitarity cuts of elastic diagrams
	- $\bullet \Rightarrow$ no additional free parameters (e.g. for diffraction)
- s -channel unitarity satisfied: $\sum_{\rm graphs,cuts} \bar{\chi}^{\rm cut} = 2 \sum_{\rm graphs} \chi^{\rm uncut}$
- **•** positive-definite cross sections for all final states \Rightarrow MC generation
- no additional free parameters for *hA* & *[AA](#page-6-0)* [c](#page-8-0)[o](#page-5-0)[ll](#page-6-0)[is](#page-7-0)[i](#page-8-0)[on](#page-0-0)[s](#page-68-0)

Most recent model update: also fine-tuning to LHC data

nar

Most recent model update: also fine-tuning to LHC data

- full resummation of \mathbb{PP} interaction graphs: no further improvements needed
- fine-tuning to LHC data had stronger effect on EAS characteristics than theoretical developments
- \bullet further: towards pQCD treatment of nonlinear effects

- **•** the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- \bullet yet important: strong impact on N_μ in EAS

- **the mechanism discussed at ISVHECRI-2012**
- a bit simple-minded one
- yet important: strong impact on *N_u* in EAS
- triggered some actions in the community (changes in other models, NA61 measurements of $\rho^0)$
- • but: there seems to be a lack of understanding

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on *N_u* in EAS
- **•** triggered some actions in the community (changes in other models, NA61 measurements of $\rho^0)$
- but: there seems to be a lack of understanding

Experimental fact: ∼ 50% of pions in π*p* - from resonance decays

- $\bullet \Rightarrow$ duality approach often used in models
	- resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good fo[r fo](#page-11-0)[rw](#page-13-0)[a](#page-9-0)[r](#page-10-0)[d](#page-16-0) [pro](#page-0-0)[d](#page-68-0)[uct](#page-0-0)[io](#page-68-0)[n](#page-0-0)

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on *N_u* in EAS
- **•** triggered some actions in the community (changes in other models, NA61 measurements of $\rho^0)$
- but: there seems to be a lack of understanding

Experimental fact: ∼ 50% of pions in π*p* - from resonance decays

- $\bullet \Rightarrow$ duality approach often used in models
	- resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- • most importantly: duality isn't good fo[r fo](#page-12-0)[rw](#page-14-0)[a](#page-9-0)[r](#page-10-0)[d](#page-68-0) [pro](#page-0-0)d[uct](#page-0-0)[io](#page-68-0)[n](#page-0-0)

Experimental fact: \sim 50% of pions in πp - from resonance decays

- $\bullet \Rightarrow$ duality approach often used in models
	- resonances not treated explicitely (their contributions included in final pion spectra)
- \bullet of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

Experimental fact: \sim 50% of pions in πp - from resonance decays

- $\bullet \Rightarrow$ duality approach often used in models
	- resonances not treated explicitely (their contributions included in final pion spectra)
- \bullet of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

Experimental fact: \sim 50% of pions in πp - from resonance decays

- $\bullet \Rightarrow$ duality approach often used in models
	- resonances not treated explicitely (their contributions included in final pion spectra)
- \bullet of limited appicability (e.g. threshold effects for \bar{p} production)
- • most importantly: duality isn't good for forward production

- $_{\text{OGSJET-II-04}}$ \bullet assuming pion exchange dominance for leading hadron production in π*p*
	- reasonable description of forward ρ^0 production
		- NB: central production of ρs not treated explicitely

つくい

NB: $\mathsf{N}A61$ data for pC (stars) added (multiplied by $\mathsf{\sigma}^\text{inel}_{pp})$

consistent with earlier measurementsi[n](#page-18-0) π*[p](#page-20-0)*

NB: NA61 data for pC (stars) added (multiplied by $\sigma_{pp}^\text{inel})$

consistent with earlier measurementsi[n](#page-19-0) π*[p](#page-21-0)*

2nd caveat: isospin invariance requires same mechanism for ρ^\pm

- experimental data: controvercial
- **•** exchanges of other Reggeons potentially important
- NB: forward ρ^\pm production instead of π^\pm would channel more energy into e/m cascade
	- $\bullet \Rightarrow$ reduce N_u in EAS
	- by how much?

2nd caveat: isospin invariance requires same mechanism for ρ^\pm

- experimental data: controvercial
- **•** exchanges of other Reggeons potentially important
- NB: forward ρ^\pm production instead of π^\pm would channel more energy into e/m cascade

 $\bullet \Rightarrow$ reduce N_μ in EAS

Upper limit: assume isospin invariant picture

Charge exchange in π*p* collisions 2nd caveat: isospin invariance requires same mechanism for ρ^\pm

- experimental data: controvercial
- **•** exchanges of other Reggeons potentially important
- NB: forward ρ^\pm production instead of π^\pm would channel more

Upper limit: assume isospin invariant picture

har

- and do EAS calculations...
- result: reduction of N_u : < 5%

Inelastic diffraction

- experimentally: formation of large rapidity gap not covered by secondaries
- challenge for MC models
- strong impact on EAS predictions (notably X_{max})

- nontrivial *MX*-shape for HMD – due to absorptive $\mathsf{effects}\ (\mathsf{\xi} \mathsf{=} M_X^2/s)$
- **o** crucial impact parameter dependence: stronger absorption (nonlinear effects) at smaller *b*

- nontrivial *M_X*-shape for HMD – due to absorptive ϵ effects $(\xi = M_X^2/s)$
- crucial impact parameter dependence: stronger absorption (nonlinear effects) at smaller *b*

- **•** nontrivial shape for HMD: due to absorptive effects
- steeper ξ-shape at large *b*: weaker absorptive effects
- flatter ξ-shape at smaller *b*: strong absorption
- **o** peripheral contribution (steeper ξ-shape) dominates for small *M^X*
- \bullet for large M_X : 'central' and 'peripheral' contributions comparable

What do we see in LHC data?

Predicted *MX*-shape agrees with SD (CMS) & rap-gaps (ATLAS)

rates of SD & rap-gaps: 30−40% below CMS & ATLAS

Inelastic diffraction & cosmic ray composition studies

Inelastic diffraction & cosmic ray composition studies

- predictions for X_{max} depend on $\sigma_{p-\text{air}}^{\text{inel}}, \ \sigma_{p-\text{air}}^{\text{diffr}}, \ K_{p-\text{air}}^{\text{inel}}, \ \ldots$
	- $\sigma_{\!pp}^{\rm tot/el}$ can be reliably extrapolated thanks to LHC studies (notably by TOTEM, ATLAS)
	- σ diffr *pp* impacts recalculation from *pp* to *pA* (*AA*)
		- $\sigma_{p-\mathrm{air}}^\mathrm{inel}$ due to inelastic screening (correlated with $\sigma_{\!pp}^\mathrm{diffr})$
		- *K* inel *^p*−air due to small 'inelasticity' of diffractive collisions

Impact of uncertainties of $\sigma_{\!pp}^{\rm SD}$ on $X_{\rm max}$ [SO, PRD89 (2014) 7, 074009]

• Presently: serious tension between CMS & TOTEM concerning diffraction rate in *pp*

- \Rightarrow may be regarded as a characteristic uncertainty for $\sigma_{\!pp}^{\rm SD}$
	- \bullet impact on X_{max} & RMS(X_{max})?

Impact of uncertainties of $\sigma_{\!pp}^{\rm SD}$ on $X_{\rm max}$ [SO, PRD89 (2014) 7, 074009]

• Presently: serious tension between CMS & TOTEM concerning diffraction rate in *pp*

- \Rightarrow may be regarded as a characteristic uncertainty for $\sigma_{\!pp}^{\rm SD}$
	- \bullet impact on X_{max} & RMS(X_{max})?

Two alternative model versions (tunes): $SD+$ & SD-

- SD+: increased high mass diffraction (HMD) (larger r_{3P}) – to approach CMS results
	- \bullet slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{\!pp}^{\rm tot/el}$ & central particle production in both cases

Two alternative model versions (tunes): $SD+$ & SD-

- SD+: increased high mass diffraction (HMD) (larger r_{3P}) – to approach CMS results
	- \bullet slightly smaller LMD to soften disagreement with TOTEM
- SD- smaller LMD (by 30%), same HMD
- similar $\sigma_{\!pp}^{\rm tot/el}$ & central particle production in both cases

Two alternative model versions (tunes): $SD+$ & SD-

- SD+: increased high mass diffraction (HMD) (larger r_{3P}) – to approach CMS results
	- \bullet slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{\!pp}^{\rm tot/el}$ & central particle production in both cases

Option SD-: smaller low mass diffraction

- \Rightarrow smaller inelastic screening \Rightarrow larger $\sigma_{p-\text{air}}^{\text{inel}}$
- ϵ smaller diffraction for proton-air \Rightarrow larger $K^{\rm inel}_{p-\rm air}$, $N^{\rm ch}_{p-\rm air}$
- $\bullet \Rightarrow$ smaller X_{max} (all effects work in the same direction): $\Delta X_{\rm max} \simeq -10$ g/cm²

 200

Option $SD+$:

- **o** opposite effects
- but: minor impact on $X_{\rm max}$ $(\Delta X_{\rm max} < 5\,{\rm g/cm}^2)$

Option $SD+$:

- **o** opposite effects
- but: minor impact on $X_{\rm max}$ $(\Delta X_{\rm max} < 5\,{\rm g/cm}^2)$
- in both cases: minor impact on $\mathsf{RMS}(X_\text{max})$: $<$ 3 $\mathrm{g/cm}^2$

Why larger *X*max differences with other models (e.g. EPOS-LHC)?

 290

Forward production: neutrons

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

How to understand the results?

- main contribution: nondiffractive collisions
	- for large x_F dominated by pion $(RRP$ $(RRP$ $(RRP$ -contribution) [Kopeliovich et al[., P](#page-44-0)R[D](#page-43-0)[9](#page-44-0)[1](#page-47-0) [\(](#page-48-0)[20](#page-0-0)[15](#page-68-0)[\) 0](#page-0-0)[54](#page-68-0)[03](#page-0-0)[0\]](#page-68-0) for large $x_{\rm F}$ - dominated by pion exchange mechanism

- main contribution: nondiffractive collisions
	- for large x_F dominated by pion $(RRP$ $(RRP$ $(RRP$ -contribution) [Kopeliovich et al[., P](#page-45-0)R[D](#page-43-0)[9](#page-44-0)[1](#page-47-0) [\(](#page-48-0)[20](#page-0-0)[15](#page-68-0)[\) 0](#page-0-0)[54](#page-68-0)[03](#page-0-0)[0\]](#page-68-0) for large $x_{\rm F}$ - dominated by pion exchange mechanism

Forward neutron spectra: LHCF $+$ ATLAS veto/trigger

(impossible with other LHC detectors)

triggering activity in ATLAS removes most of diffraction

 \Rightarrow neutron spectra measurement in ND events E (GeV) [E \(G](#page-47-0)e[V\)](#page-49-0)

Forward neutron spectra: LHCF $+$ ATLAS veto/trigger

- (impossible with other LHC detectors)
- triggering activity in ATLAS removes most of diffraction

 \Rightarrow neutron spectra measurement in ND events E (GeV) [E \(G](#page-48-0)e[V\)](#page-50-0)

Forward neutron spectra: $LHCF + ATLAS$ veto/trigger

Combination of the 3 measurements \Rightarrow separation of the different components!

Require at least 1, 5, 10 charged particles in ATLAS ($p_t > 0.5$ GeV)

- o enhanced multiple scattering
- $\bullet \Rightarrow$ strong suppression of forward neutron production
	- pion exchange goes away
	- higher energy loss by the 'remnant' state
- important test for CR applications: measure of the 'inelasticity' in ND collisions
- NB: ND *p*−air collision - like more 'ce[ntr](#page-50-0)[al'](#page-52-0) *[p](#page-51-0)[p](#page-53-0)* [i](#page-54-0)[nte](#page-0-0)[ra](#page-68-0)[cti](#page-0-0)[on](#page-68-0)

Require at least 1, 5, 10 charged particles in ATLAS ($p_t > 0.5$ GeV)

- enhanced multiple scattering
- $\bullet \Rightarrow$ strong suppression of forward neutron production
	- pion exchange goes away
	- higher energy loss by the 'remnant' state
- important test for CR applications: measure of the 'inelasticity' in ND collisions
- NB: ND *p*−air collision like more 'ce[ntr](#page-51-0)[al'](#page-53-0) *[p](#page-51-0)[p](#page-53-0)* [i](#page-54-0)[nte](#page-0-0)[ra](#page-68-0)[cti](#page-0-0)[on](#page-68-0)

 $\overline{200}$

• order of magnitude differences

- **•** nearly same spectral shape in SIBYLL for all the triggers! (forward spectra decoupled from central production)
- $\bullet \Rightarrow$ important discriminator between mo[de](#page-52-0)l[s](#page-54-0)

Forward production: π^0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

 2990

Forward production: π^0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- $\bullet \Rightarrow$ enhanced multiple scattering
- $\bullet \Rightarrow$ softer pion spectra
- clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with en[erg](#page-55-0)[y\)](#page-57-0)

 $2Q$

• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- $\bullet \Rightarrow$ enhanced multiple scattering
- $\bullet \Rightarrow$ softer pion spectra
- • clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with en[erg](#page-56-0)[y\)](#page-58-0) $2Q$

- almost perfect limiting fragmentation in SIBYLL
- **•** related: nearly perfect Feynman scaling in that model
- • NB: TOTEM & CMS may test this wit[h c](#page-57-0)[ha](#page-59-0)[r](#page-55-0)[g](#page-56-0)[e](#page-59-0)[d](#page-60-0) [h](#page-0-0)[adr](#page-68-0)[on](#page-0-0)[s](#page-68-0)

- **•** almost perfect limiting fragmentation in SIBYLL
- related: nearly perfect Feynman scaling in that model
- • NB: TOTEM & CMS may test this wit[h c](#page-58-0)[ha](#page-60-0)[r](#page-55-0)[g](#page-56-0)[e](#page-59-0)[d](#page-60-0) [h](#page-0-0)[adr](#page-68-0)[on](#page-0-0)[s](#page-68-0)

Summary (1)

¹ Development of QGSJET-II completed; latest update included

- **•** treatment of all significant PP-interaction contributions
- calibration to LHC data (notably to $\sigma_{\!pp}^{\rm tot/el}$ by TOTEM)
- \bullet dominance of $π$ -exchange for charge exchange in $πp$
- **2** Further: towards pQCD treatment of nonlinear effects • not a short-term project

3 LHC data generally support the approach of the model

- however, indications in the data:
	- for smaller low mass and larger high mass diffraction
	- for larger contribution of π-exchange in *pp* collisions
- both are a matter of fine-tuning but more decisive data needed
	- e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS

 000

indications for stronger saturation effects in central *pA* & *AA* \Rightarrow restrictions for model applicability

Summary (1)

1 Development of QGSJET-II completed; latest update included

- **•** treatment of all significant PP-interaction contributions
- calibration to LHC data (notably to $\sigma_{\!pp}^{\rm tot/el}$ by TOTEM)
- \bullet dominance of $π$ -exchange for charge exchange in $πp$
- **2** Further: towards pQCD treatment of nonlinear effects • not a short-term project

3 LHC data generally support the approach of the model

- however, indications in the data:
	- for smaller low mass and larger high mass diffraction
	- for larger contribution of π-exchange in *pp* collisions
- both are a matter of fine-tuning but more decisive data needed
	- e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS

 000

indications for stronger saturation effects in central *pA* & *AA* \Rightarrow restrictions for model applicability

Summary (1)

1 Development of QGSJET-II completed; latest update included

- **•** treatment of all significant PP-interaction contributions
- calibration to LHC data (notably to $\sigma_{\!pp}^{\rm tot/el}$ by TOTEM)
- \bullet dominance of $π$ -exchange for charge exchange in $πp$
- **2** Further: towards pQCD treatment of nonlinear effects • not a short-term project

³ LHC data generally support the approach of the model

- however, indications in the data:
	- for smaller low mass and larger high mass diffraction
	- for larger contribution of π-exchange in *pp* collisions
- both are a matter of fine-tuning but more decisive data needed
	- e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS

 000

indications for stronger saturation effects in central *pA* & *AA* \Rightarrow restrictions for model applicability

- ¹ Present treatment of charge exchange in π*p* (π*A*): likely the upper bound for *N^µ* in EAS
	- NA61 results on forward ρ^0 consistent with earlier data
	- isospin invariance requires a similar mechanism for ρ^+
		- though: other Reggeon trajectories potentially important

² Estimated uncertainties of QGSJET-II-04 predictions for EAS:

- Δ RMS(X_{max}) $\simeq \pm 3$ g/cm²
- $\Delta X_{\rm max} \simeq \pm 10 \ \text{g/cm}^2$

$$
\bullet\;\;\Delta N_{\mu}\simeq\left\{ \begin{array}{c} +0\%\quad -5\%\quad \ \ \, \end{array}\right.
$$

- ¹ Present treatment of charge exchange in π*p* (π*A*): likely the upper bound for *N^µ* in EAS
	- NA61 results on forward ρ^0 consistent with earlier data
	- isospin invariance requires a similar mechanism for ρ^+
		- though: other Reggeon trajectories potentially important

² Estimated uncertainties of QGSJET-II-04 predictions for EAS:

•
$$
\triangle
$$
 RMS(X_{max}) $\simeq \pm 3 \text{ g/cm}^2$

•
$$
\Delta X_{\text{max}} \simeq \pm 10 \text{ g/cm}^2
$$

• $\Delta X_{\text{max}} \int +0\%$

$$
\Delta N_{\mu} \simeq \left\{ \begin{array}{c} 0.0003 \\ -5\% \end{array} \right.
$$

O

Extra slides

K ロ X イロ X K ミ X K ミ X ミ → D Q Q Q

Potential impact of diffraction uncertainties on CR studies

 290

Potential impact of diffraction uncertainties on CR studies

Fit of Telescope Array data by *p*+Fe CR composition

- option SD+: pure proton composition excluded
- option SD-: almost pure proton composition is o.k. (astrophysically favorable scenario)

