Performance and future evolution of QGSJET Sergey Ostapchenko Frankfurt Institute for Advanced Studies

HAP Workshop on CR Composition

September 21, 23, 201

Outline of the talk

- Overview of the model & recent udates
- Porward ρ⁰ production & π-exchange mechanism in πp collisions
- Inelastic diffraction: model predictions, LHC data, and EAS characteristics
- LHCf data on forward spectra of neutrons and π⁰: model-based analysis
- Summary

High energy collisions = multiple scattering processes

- many parton cascades in parallel
- typically small momentum transfer along the cascades

/□ ▶ < 三 ▶ <

High energy collisions = multiple scattering processes

- many parton cascades in parallel
- typically small momentum transfer along the cascades

RFT: Pomerons = 'elementary' cascades

- e.g. elastic amplitude
- requires Pomeron amplitude & Pomeron-hadron vertices

QGSJET-II-04: full resummation of PP-interactions [SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

QGSJET-II-04: full resummation of PP-interactions [SO, PLB636 (2006) 40; PRD77 (2008) 034009; PRD83 (2011) 014018]

Nonlinear processes: Pomeron-Pomeron interactions (scattering of intermediate partons off the proj./target hadrons & off each other)

- partial cross sections for various final states (including diffractive): from unitarity cuts of elastic diagrams
 - \Rightarrow no additional free parameters (e.g. for diffraction)
- s-channel unitarity satisfied: $\sum_{\text{graphs,cuts}} \bar{\chi}^{\text{cut}} = 2 \sum_{\text{graphs}} \chi^{\text{uncut}}$
- positive-definite cross sections for all final states \Rightarrow MC generation
- no additional free parameters for hA & AA collisions

Most recent model update: also fine-tuning to LHC data

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Most recent model update: also fine-tuning to LHC data

- full resummation of PP interaction graphs: no further improvements needed
- fine-tuning to LHC data had stronger effect on EAS characteristics than theoretical developments
- further: towards pQCD treatment of nonlinear effects

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on N_{μ} in EAS

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on N_{μ} in EAS
- triggered some actions in the community (changes in other models, NA61 measurements of ρ⁰)
- but: there seems to be a lack of understanding

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on N_{μ} in EAS
- triggered some actions in the community (changes in other models, NA61 measurements of p⁰)
- but: there seems to be a lack of understanding

- \Rightarrow duality approach often used in models
 - resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

- the mechanism discussed at ISVHECRI-2012
- a bit simple-minded one
- yet important: strong impact on N_{μ} in EAS
- triggered some actions in the community (changes in other models, NA61 measurements of p⁰)
- but: there seems to be a lack of understanding

- ullet \Rightarrow duality approach often used in models
 - resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

- ullet \Rightarrow duality approach often used in models
 - resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

- ullet \Rightarrow duality approach often used in models
 - resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

- ullet \Rightarrow duality approach often used in models
 - resonances not treated explicitely (their contributions included in final pion spectra)
- of limited appicability (e.g. threshold effects for \bar{p} production)
- most importantly: duality isn't good for forward production

- assuming pion exchange dominance for leading hadron production in πp
- reasonable description of forward p⁰ production
- NB: central production of ρs not treated explicitely

• NB: NA61 data for pC (stars) added (multiplied by $\sigma_{pp}^{\text{inel}}$)

• consistent with earlier measurements in πp

NB: NA61 data for pC (stars) added (multiplied by σ^{inel}_{pp})

• consistent with earlier measurements in πp

2nd caveat: isospin invariance requires same mechanism for ρ^\pm

- experimental data: controvercial
- exchanges of other Reggeons potentially important
- NB: forward ρ^{\pm} production instead of π^{\pm} would channel more energy into e/m cascade
 - \Rightarrow reduce N_{μ} in EAS
 - by how much?

2nd caveat: isospin invariance requires same mechanism for ρ^{\pm}

- experimental data: controvercial
- exchanges of other Reggeons potentially important
- NB: forward ρ^\pm production instead of π^\pm would channel more energy into e/m cascade
 - \Rightarrow reduce N_{μ} in EAS

Upper limit: assume isospin invariant picture

Charge exchange in πp collisions 2nd caveat: isospin invariance requires same mechanism for ρ^{\pm}

- experimental data: controvercial
- exchanges of other Reggeons potentially important
- NB: forward ρ^\pm production instead of π^\pm would channel more

Upper limit: assume isospin invariant picture

and do EAS calculations...

• result: reduction of N_{μ} : < 5%

Inelastic diffraction

- experimentally: formation of large rapidity gap not covered by secondaries
- challenge for MC models
- strong impact on EAS predictions (notably X_{max})

- nontrivial M_X -shape for HMD – due to absorptive effects ($\xi = M_X^2/s$)
- crucial impact parameter dependence: stronger absorption (nonlinear effects) at smaller b

- nontrivial M_X -shape for HMD – due to absorptive effects ($\xi = M_X^2/s$)
- crucial impact parameter dependence: stronger absorption (nonlinear effects) at smaller b

- nontrivial shape for HMD: due to absorptive effects
- steeper ξ-shape at large b: weaker absorptive effects
- flatter ξ-shape at smaller b: strong absorption
- peripheral contribution (steeper ξ-shape) dominates for small M_X
- for large M_X: 'central' and 'peripheral' contributions comparable

Agreement of the predicted $\sigma^{ m SD}_{pp}$ (M_X -shape and rate) with <code>TOTEM</code>					
M_X range, GeV	< 3.4	3.4-1100	3.4-7	7-350	350-1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
QGSJET-II-04	3.9	7.2	1.9	3.9	1.5

What do we see in LHC data?

Agreement of the predicted $\sigma^{ m SD}_{pp}$ (M_X -shape and rate) with <code>TOTEM</code>					
M_X range, GeV	< 3.4	3.4-1100	3.4-7	7-350	350-1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
QGSJET-II-04	3.9	7.2	1.9	3.9	1.5

Predicted M_X -shape agrees with SD (CMS) & rap-gaps (ATLAS)

• rates of SD & rap-gaps: 30 - 40% below CMS & ATLAS

Inelastic diffraction & cosmic ray composition studies

- predictions for X_{max} depend on $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$, $K_{p-\text{air}}^{\text{inel}}$, ...
 - $\sigma_{pp}^{\text{tot/el}}$ can be reliably extrapolated thanks to LHC studies (notably by TOTEM, ATLAS)
 - $\sigma_{pp}^{\text{diffr}}$ impacts recalculation from pp to pA (AA)
 - σ_{p-air}^{inel} due to inelastic screening (correlated with σ_{pp}^{diffr})
 - $K_{p-\text{air}}^{\text{inel}}$ due to small 'inelasticity' of diffractive collisions

Inelastic diffraction & cosmic ray composition studies

 $X_{\rm max}$ – best suited for CR composition studies

- predictions for X_{max} depend on $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$, $K_{p-\text{air}}^{\text{inel}}$, ...
 - σ^{tot/el}_{pp} can be reliably extrapolated thanks to LHC studies (notably by TOTEM, ATLAS)
 - $\sigma_{pp}^{\text{diffr}}$ impacts recalculation from pp to pA (AA)
 - σ_{p-air}^{inel} due to inelastic screening (correlated with σ_{pp}^{diffr})
 - $K_{p-\text{air}}^{\text{inel}}$ due to small 'inelasticity' of diffractive collisions

Impact of uncertainties of σ_{pp}^{SD} on X_{max} [SO, PRD89 (2014) 7, 074009]

 Presently: serious tension between CMS & TOTEM concerning diffraction rate in pp

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\left[\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}, \text{ mb} ight]$	0.42	0.62

- \Rightarrow may be regarded as a characteristic uncertainty for σ_{pp}^{SD}
 - impact on X_{max} & RMS(X_{max})?

Impact of uncertainties of σ_{pp}^{SD} on X_{max} [SO, PRD89 (2014) 7, 074009]

 Presently: serious tension between CMS & TOTEM concerning diffraction rate in pp

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}$, mb	0.42	0.62

- \Rightarrow may be regarded as a characteristic uncertainty for σ_{pp}^{SD}
 - impact on X_{\max} & RMS (X_{\max}) ?

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD) (larger r₃ℙ)
 to approach CMS results
 - $\bullet\,$ slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases

Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS										
	M_X	range, GeV	< 3.4	3.4 - 1100	3.4-7	7-350	350-1100			
	TC	DTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$			
	opt	tion SD+	3.2	8.2	1.8	4.7	1.7			
	opt	tion SD-	2.6	7.2	1.6	3.9	1.7			
		CMS ($M_X = 12 - 394$ GeV)			option SD+		ו SD-			
	4.3 ± 0.6				3.7	3.	1			
	•	tion SD-			on SD+	optior	n SD-			

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD) (larger r₃ℙ)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- \bullet similar $\sigma_{\it pp}^{tot/el}$ & central particle production in both cases

Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS										
M_X range, GeV	< 3.4	3.4 - 1100	3.4-7	7-350	350-1100					
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$					
option SD+	3.2	8.2	1.8	4.7	1.7					
option SD-	2.6	7.2	1.6	3.9	1.7					
CMS ($M_X = 12 - 394$ GeV) option SD+ option SD-										
$CMS (M_2)$	CMS ($M_X = 12 - 394$ GeV)			optior	n SD-					
4.3 ± 0.6	4.3 ± 0.6		3.7		.1					

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD) (larger r₃ℙ)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases

Option SD-: smaller low mass diffraction

- \Rightarrow smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for proton-air \Rightarrow larger $K_{p-\mathrm{air}}^{\mathrm{inel}}, N_{p-\mathrm{air}}^{\mathrm{ch}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction): $\Delta X_{\text{max}} \simeq -10 \text{ g/cm}^2$

Option SD+: larger high mass diffraction

- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \,\text{g/cm}^2$)

Option SD+: larger high mass diffraction

- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \,\text{g/cm}^2$)
- in both cases: minor impact on $RMS(X_{max})$: $< 3 g/cm^2$

Why larger X_{max} differences with other models (e.g. EPOS-LHC)?

DQC

Forward production: neutrons

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

How to understand the results?

- low mass projectile diffr.: up to 50% contribution at $x_{\rm F} \rightarrow 1$
- main contribution: nondiffractive collisions
 - for large x_F dominated by pion exchange mechanism (RRP-contribution) [Kopeliovich et al., PRD91 (2015) 054030]

- low mass projectile diffr.: up to 50% contribution at $x_{
 m F}
 ightarrow 1$
- main contribution: nondiffractive collisions
 - for large x_F dominated by pion exchange mechanism (\mathbb{RRP} -contribution) [Kopeliovich et al., PRD91 (2015) 054030]

Forward neutron spectra: LHCF + ATLAS veto/trigger

- veto removes ND almost completely!
 - \Rightarrow allows a clean detection of low mass diffraction (impossible with other LHC detectors)
- triggering activity in ATLAS removes most of diffraction

• \Rightarrow neutron spectra measurement in ND events

Forward neutron spectra: LHCF + ATLAS veto/trigger

- veto removes ND almost completely!
 - ⇒ allows a clean detection of low mass diffraction (impossible with other LHC detectors)
- triggering activity in ATLAS removes most of diffraction

• \Rightarrow neutron spectra measurement in ND events

Forward neutron spectra: LHCF + ATLAS veto/trigger

Combination of the 3 measurements \Rightarrow separation of the different components!

Require at least 1, 5, 10 charged particles in ATLAS ($p_t > 0.5$ GeV)

- enhanced multiple scattering
- \Rightarrow strong suppression of forward neutron production
 - pion exchange goes away
 - higher energy loss by the 'remnant' state
- important test for CR applications: measure of the 'inelasticity' in ND collisions
- NB: ND p-air collision like more 'central' pp interaction

Require at least 1, 5, 10 charged particles in ATLAS ($p_t > 0.5$ GeV)

- enhanced multiple scattering
- \Rightarrow strong suppression of forward neutron production
 - pion exchange goes away
 - higher energy loss by the 'remnant' state
- important test for CR applications: measure of the 'inelasticity' in ND collisions
- NB: ND p air collision like more 'central' pp interaction

order of magnitude differences

- nearly same spectral shape in SIBYLL for all the triggers! (forward spectra decoupled from central production)
- \Rightarrow important discriminator between models

Forward production: π^0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

Forward production: π^0

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- ullet \Rightarrow enhanced multiple scattering
- \Rightarrow softer pion spectra
- clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with energy)

• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- \Rightarrow enhanced multiple scattering
- \Rightarrow softer pion spectra
- clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with energy)

- almost perfect limiting fragmentation in SIBYLL
- related: nearly perfect Feynman scaling in that model
- NB: TOTEM & CMS may test this with charged hadrons

- almost perfect limiting fragmentation in SIBYLL
- related: nearly perfect Feynman scaling in that model
- NB: TOTEM & CMS may test this with charged hadrons

Summary (1)

Development of QGSJET-II completed; latest update included

- $\bullet\,$ treatment of all significant $\mathbb{PP}\text{-interaction}$ contributions
- calibration to LHC data (notably to $\sigma_{pp}^{\text{tot/el}}$ by TOTEM)
- dominance of π -exchange for charge exchange in πp
- Further: towards pQCD treatment of nonlinear effects
 not a short-term project

Support the approach of the model

- however, indications in the data:
 - for smaller low mass and larger high mass diffraction
 - for larger contribution of π -exchange in pp collisions
- both are a matter of fine-tuning but more decisive data needed
 - e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS
- indications for stronger saturation effects in central pA & AA
 ⇒ restrictions for model applicability

Summary (1)

Development of QGSJET-II completed; latest update included

- \bullet treatment of all significant $\mathbb{PP}\text{-interaction}$ contributions
- calibration to LHC data (notably to $\sigma_{pp}^{\text{tot/el}}$ by TOTEM)
- dominance of π -exchange for charge exchange in πp
- Further: towards pQCD treatment of nonlinear effects
 not a short-term project

S LHC data generally support the approach of the model

- however, indications in the data:
 - for smaller low mass and larger high mass diffraction
 - for larger contribution of π -exchange in pp collisions
- both are a matter of fine-tuning but more decisive data needed
 - e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS
- indications for stronger saturation effects in central pA & AA
 ⇒ restrictions for model applicability

Summary (1)

Development of QGSJET-II completed; latest update included

- \bullet treatment of all significant $\mathbb{PP}\text{-interaction}$ contributions
- calibration to LHC data (notably to $\sigma_{pp}^{tot/el}$ by TOTEM)
- dominance of π -exchange for charge exchange in πp
- Further: towards pQCD treatment of nonlinear effects
 not a short-term project

LHC data generally support the approach of the model

- however, indications in the data:
 - for smaller low mass and larger high mass diffraction
 - for larger contribution of π -exchange in pp collisions
- both are a matter of fine-tuning but more decisive data needed
 - e.g. from joint studies by LHCf & ATLAS or TOTEM & CMS
- indications for stronger saturation effects in central pA & AA
 ⇒ restrictions for model applicability

Summary (2)

- Present treatment of charge exchange in πp (πA): likely the upper bound for N_{μ} in EAS
 - NA61 results on forward ρ^0 consistent with earlier data
 - $\bullet\,$ isospin invariance requires a similar mechanism for ρ^+
 - though: other Reggeon trajectories potentially important
- Stimated uncertainties of QGSJET-II-04 predictions for EAS:
 - $\Delta \text{RMS}(X_{\text{max}}) \simeq \pm 3 \text{ g/cm}^2$

•
$$\Delta X_{\max} \simeq \pm 10 \text{ g/cm}$$

• $\Delta N_{\mu} \simeq \begin{cases} +0\% \\ -5\% \end{cases}$

Summary (2)

- Present treatment of charge exchange in πp (πA): likely the upper bound for N_{μ} in EAS
 - NA61 results on forward ρ^0 consistent with earlier data
 - $\bullet\,$ isospin invariance requires a similar mechanism for ρ^+
 - though: other Reggeon trajectories potentially important

白 ト イヨト イヨト

Stimated uncertainties of QGSJET-II-04 predictions for EAS:

- $\Delta \text{RMS}(X_{\text{max}}) \simeq \pm 3 \text{ g/cm}^2$
- $\Delta X_{\text{max}} \simeq \pm 10 \text{ g/cm}^2$ • $\Delta N_{\mu} \simeq \begin{cases} +0\% \\ -5\% \end{cases}$

Extra slides

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

Potential impact of diffraction uncertainties on CR studies

• Fit of Telescope Array data by p+Fe CR composition

-<- ≣ →

Potential impact of diffraction uncertainties on CR studies

• Fit of Telescope Array data by $p+{\rm Fe}\ {\rm CR}$ composition

- option SD+: pure proton composition excluded
- option SD-: almost pure proton composition is o.k. (astrophysically favorable scenario)

