

Performance and future Evolution of SIBYLL

Felix Riehn, IKP, KIT with R. Engel, A. Fedynitch, T.K. Gaisser and T. Stanev

HAP composition workshop 2015

Institut für Kernphysik

HADRONIC INTERACTION MONTE CARLO BY Ralph ENGEL R.S. FLETCHER, T.K. GAISSER P. LIPARI, T. STANEV

Publication to be cited when using this program: R. Engel et al., Proc. 26th ICRC, 1 (1999) 415

last modified: 28. Sept. 2001 by R. Engel

Sibyll 2.3 – Release notes

Updates, changes to Sibyll 2.1 (PRD 2009, last mod. 2001 !!):

- pp cross section
- Increased baryon pair production
- Added charm production
- Leading vector mesons
- Updated PDFs
- Changed pT distributions to mT
- Revised leading particle model 'remnant treatment'
- Inel. Screening in nuclear collisions
- Bugfixes (off-shell particles, energy conservation)

Sibyll 2.3 - Performance

Muon number prediction

Institut für Kernphysik (IKP)

baryon

meson

Muon production in extensive air showers

Short-lived hadrons

High energy muons

(charm):

Prompt decay

Baryons:

5

More energy in hadrons

Low energy muons

Neutral pions vs. rho:

Keep energy in hadronsAnti-correlation

 ν_{μ}

Muon number with increased baryon prod.

Rho0 in air showers

In itself not very important

Negligible contribution to prompt muons

New production mechanism!

Data suggest few leading neutral pions in meson interactions

$$\pi^{\pm} + p \not\rightarrow \pi^0_{\text{lead}} + X$$

Instead

$$\pi^{\pm} + p \to \rho_{\text{lead}}^0 + X$$

More hadronic subshowers! → more muons

Pi0 vs. Rho0 in pi-p and pi-C

NA22 pi0 / rho0: four models

NA61 pi0 / rho0: four models

Sibyll evolution: Number of muons

Sibyll evolution: Number of muons

Sibyll evolution: Number of muons

Xmax prediction

Institut für Kernphysik (IKP)

Influences on Xmax

Open problem: minijets

18

- Broad dN/deta in Sibyll 2.1 by accident
- Minijet color flow disconnected from rest of hadron
- Large tail in multiplicity distribution Number of minijets very high → saturation effects missing

Xmax prediction, Sibyll

Xmax prediction, latest models

Conclusions

Model improved in many aspects

- Low & high energy particle production
- Leading particles (LHCf neutrons & pions)
- Charm production included

Open problems:

- Large tail in multiplicity distribution, incomplete saturation (?)
- Narrow pseudorapidity distribution, disconnected minijets (?)

Predictions:

- Increased number of muons at ground (low and very high energy)
- Much deeper Xmax, but inelasticity suggests Xmax probably lower
- Consistency (Xmax, RMS(Xmax)) probably improved

Role of the p-p cross section

Role of neutral pion production: Xmax

No influence on Xmax, probably because meson interactions are important in late stages when the bulk em cascade was formed

Sibyll evolution: muon energy spectrum

Sibyll evolution: charm production

Sibyll evolution: cross section

Sibyll evolution: baryon production

Sibyll evolution: remnant

Inclusive atmospheric flux predictions

Institut für Kernphysik (IKP)

RMS(Xmax) prediction

