arXiv:1508.03737

Method & Observables: Investigation of Magnetic Fields using Ultra-High Energy Cosmic Rays

GEFÖRDERT VOM

Martin Erdmann, Gero Müller, Martin Urban

Bundesministerium für Bildung und Forschung

21-Sep-2015

Magnetic fields: key to cosmic ray origin

Extragalactic fields (nG, 10 Mpc)

Large scale simulations

Galactic field (µG, 10 kpc)

Parameterizations from 40,000 Faraday rotation & sychrotron radiation measurements

Simulated effect on cosmic rays (Farrar et al)

Pshirkov et al., 2011, ApJ, 738, 192; 2013, MNRAS, 436, 2326 Jansson, Farrar, 2012, ApJ, 757, 14; 2012, ApJ, 761, L11 Beck et al., 2014, arXiv:1409.5120

New analysis concept

Test validity of source candidates, field parameterizations, and composition without imposing potentially unphysical conditions on measured data

Simulated astrophysical scenario

Analysis: expected arrival directions

For sufficiently strong galactic field: proton identification to some extent

Observable 1: Change in angular distances

Positive asymmetry:
$$A \equiv 2 \frac{N(\alpha > \alpha_{\rm GMF}) - N(\alpha < \alpha_{\rm GMF})}{N(\alpha > \alpha_{\rm GMF}) + N(\alpha < \alpha_{\rm GMF})} = 0.96$$

Martin Erdmann - RWTH Aachen University

Observable 2: Change in clustering strength

Clustering improvement by magnetic field corrections: $\Delta \lg P = -3.8$

Combine: clustering & angular asymmetry

Results differ from isotropic cosmic rays & arbitrary field patterns (>3 σ)

Test assumptions of combined model

A) Vary galactic field parameterization assume to be correct: sources and composition

A) Reversing the galactic field orientation

Directional characteristics of galactic magnetic field: expect striking effect

B) Sensitivity to source directions

Source directions are important

Sensitivity to signal in isotropic background

Simulated data sets

Signal detection efficiency

each from 100 realizations using regular JF12 field, correct sources

Method sensitive at 10% signal fraction

Conclusions

- Improved source correlation method
 - expected arrival directions include field deflections
- Method exhibits sensitivity to
 - galactic magnetic field structure
 - source directions
 - 10% percent signal fraction

with magnetic field corrections

investigations of cosmic particle origin and acceleration enter new phase

BACKUP

Magnetic field directions by cosmic rays?

Limits on magnitude of magnetic fields and number of sources

Galactic magnetic lenses

H-P Bretz, M.E., P. Schiffer, D., T. Winchen, AP 54C (2014) 110

Lenses suited for sources at Mpc distance from the observer

Multinomial probability

Multinomial probability

=probability of cluster configuration

$$P(n_1, \dots, n_{22}; N - N_{hit}) = \frac{N!}{n_1! \dots n_{22}! (N - N_{hit})!} p_1^{n_1} \dots p_{22}^{n_{22}} (1 - p_{iso})^{N - N_{hit}}$$

N : total number of cosmic rays

 $N_{\rm hit}$: number of cosmic rays correlating with sources $N_{\rm hit}$ = $\Sigma n_{\rm i}$

- p_{iso} : summed average source hit probability $p_{iso} = \Sigma p_i$
- *i* : source identifier
- *p*_i : source *i* average hit probability
- n_i : number of cosmic rays associated with source *i*

Mean deflection of protons in fields

Mean deflection of protons with E>55 EeV from 10 Mpc distance

Does field move any cosmic rays→sources?

Directional correlations of sources and cosmic rays can be distinguished

Does field move cosmic rays \rightarrow any sources?

Directional correlations of sources and cosmic rays can be distinguished

Reversing the galactic field orientation

Directional characteristics of galactic magnetic field: expect striking effect

Sensitivity study: signal fraction

Method sensitive at 10% signal fraction