Results from a while ago ...

Lessons about muons from CASA-MIA

Jim Matthews

Louisiana State University

CASA-MIA Dublin ICRC 1991

CASA-MIA ~1987-1997

The muon counters were designed as a veto for gamma-ray showers

Only timing recorded, not pulse height

Maximum-likelihood fit of the lateral distribution for the purpose of finding total muon size N_u

Greisen Function*:

 $\rho_{\mu} \sim N_{\mu} r^{-0.75} (1+r/r_{o})^{-2.5}$ $r_{o} = 300 m$

(Also used things like ρ_{μ} (600))

^{*}K. Greisen, Prog. Elem. Part. C.R. Phys. III (1956)

$$R_{\mu} = \log N_{\mu} - \langle \log N_{\mu} \rangle$$

Diffuse gamma rays in the knee region: flux limit ~10⁻⁵ of CR

J. Matthews et al., Ap. J. **375** (1991) 202; M. Chantell et al., PRL **79** (1997) 1805; A. Borione et al., Ap. J. **493** (1998) 175

$$N_{max} = E / \xi_c^e$$
$$X_{max} = \lambda \ln (E / \xi_c^e)$$

$$E_{\circ} = \xi_c^e N_{max} + \xi_c^{\pi} N_{\mu}$$

\$\mathbf{\x}_c^{e} = 85 MeV
collision losses >
radiative losses

(Heitler, 1930's)

 $\xi_c^{\pi} = 20 \text{ GeV}$

Prob decay > interaction

(J.M., Astropart. Phys. 22 (2005) 387)

Heitler: $X_{max} = 37 \ln(E/\xi_c^{e})$

E ~ Ν_e + 25 Ν_μ

Independent of primary ...

("25" is detectordependent) The "knee" looked very much like that seen by the Tibet experiment

The energy systematically was less than Tibet, Akeno by about 20%

Glasmacher et al., Astropart. Phys. 10 (1999) 291

Distinguish "heavy" versus "light" by comparing $(N_{\mu}, N_{e}, LDF$ slope) to simulation population.

See a different knee.

Glasmacher et al., Astropart. Phys. 12 (1999) 1

$$R = N_{ch} / N_{tot}$$

where "N_{ch}" meant π^{\pm} , but really is the number of particles which could decay into muons

$$\frac{dN_{\mu}}{N_{\mu}} = \frac{\ln[E_{\circ}/\xi_c^{\pi}]}{\ln[N_{tot}]} \frac{dR}{R} \approx (5-10) \frac{dR}{R}$$

Small changes in particle production (EPOS) or ρ^{0} can have much larger changes in muon production

Hi-Res (prototype) – MIA elongation rate

Fits use both HiRes and MIA (geometry)

Models: not enough muons?

T. Abu-Zayyad et al., PRL 84 (2000) 4276

Conclusions (or history lesson):

Muons are a vital and important measurement of air showers, and always have been.

(This is called "Preaching to the Choir")