Dipole anisotropies & local source

Michael Kachelrieß

NTNU, Trondheim

with G.Giacinti, A.Nernov, V.Savchenko, D.Semikoz

◀◻▶ ◀▱▸ ◀壹▸ ◀壹▸

111

Outline

Outline of the talk

Introduction

- Propagation in magnetic fields
- 2 Dipole anisotropies calculational approaches
 - diffusion approach
 - trajectory approach
- Oppose anisotropy and the transition energy
- Dipole anisotropy in the escape model
 - Anisotropy from background of all sources
 - Anisotropy of a single source
 - single source: other signatures

Outline of the talk

- Introduction
 - Propagation in magnetic fields
- Dipole anisotropies calculational approaches
 - diffusion approach
 - trajectory approach
- Oipole anisotropy and the transition energy
- Oipole anisotropy in the escape model
 - Anisotropy from background of all sources
 - Anisotropy of a single source
 - single source: other signatures

Outline

Outline of the talk

Introduction

- Propagation in magnetic fields
- 2 Dipole anisotropies calculational approaches
 - diffusion approach
 - trajectory approach
- Oppose anisotropy and the transition energy
- Dipole anisotropy in the escape model
 - Anisotropy from background of all sources
 - Anisotropy of a single source
 - single source: other signatures

Outline

Outline of the talk

- Introduction
 - Propagation in magnetic fields
- 2 Dipole anisotropies calculational approaches
 - diffusion approach
 - trajectory approach
- Oppose anisotropy and the transition energy
- Dipole anisotropy in the escape model
 - Anisotropy from background of all sources
 - Anisotropy of a single source
 - single source: other signatures

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $k_{\perp}R_{L} \sim 1$.

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150)$ pc
- CRs scatter mainly on field fluctuations B(k) with $k_{\perp}R_{L} \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 - \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$
Bohm	$\alpha = 1$	\Leftrightarrow	$\beta = 1$

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150)$ pc
- CRs scatter mainly on field fluctuations B(k) with $k_{\perp}R_{L} \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 - \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$
Bohm	$\alpha = 1$	\Leftrightarrow	$\beta = 1$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\alpha}$
 - observed: $dN/dE \propto E^{-\alpha-\beta}$

 $\alpha = 3/2$ and $\beta = 1/2$ "simplest" combination, degeneracies D/h

- 4 同 6 4 日 6 4 日 6

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150)$ pc
- CRs scatter mainly on field fluctuations B(k) with $k_{\perp}R_{L} \sim 1$.
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient $D(E) \propto E^{\beta}$ as $\beta = 2 - \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$
Bohm	$\alpha = 1$	\Leftrightarrow	$\beta = 1$

- observed energy spectrum of primaries:
 - injection: $dN/dE \propto E^{-\alpha}$
 - observed: $dN/dE \propto E^{-\alpha-\beta}$

 $\alpha = 3/2$ and $\beta = 1/2$ "simplest" combination, degeneracies D/h

• anisotropy
$$\delta_i = -3D_{ij}\nabla_i \ln(n)$$

- 4 同 6 4 日 6 4 日 6

Diffusion approach:

- numerical (GALPROP, Dragon, ...):
 - aim at complete modelling of interactions
 - typically continuous sources
 - \Rightarrow not useful for anisotropy

Diffusion approach:

- numerical (GALPROP, Dragon, ...):
 - aim at complete modelling of interactions
 - typically continuous sources
 - \Rightarrow not useful for anisotropy
- (semi-) analytical approach: Green function $G(\mathbf{x}', t'; \mathbf{x}, t)$
 - known for bursting case
 - anisotropy

[Lee '72, Blasi & Amato '12]

$$\delta \propto \langle \boldsymbol{J} \rangle + \langle \delta \boldsymbol{J} \delta \boldsymbol{J} \rangle + \dots$$

G known for purely turbulent field – what happens for $\boldsymbol{B}(\boldsymbol{x}) = \boldsymbol{B}_{\text{reg}}(\boldsymbol{x}) + \boldsymbol{B}_{\text{rms}}(\boldsymbol{x})?$

通 ト イヨ ト イヨト

Diffusion approach:

- numerical (GALPROP, Dragon, ...):
 - aim at complete modelling of interactions
 - typically continuous sources
 - \Rightarrow not useful for anisotropy
- (semi-) analytical approach: Green function $G({m x}',t';{m x},t)$
 - known for bursting case
 - anisotropy

[Lee '72, Blasi & Amato '12]

$$\delta \propto \langle \boldsymbol{J} \rangle + \langle \delta \boldsymbol{J} \delta \boldsymbol{J} \rangle + \dots$$

- G known for purely turbulent field what happens for $B(x) = B_{reg}(x) + B_{rms}(x)$?
- both:
 - only weak connection of $D_{ij}(\boldsymbol{x})$ to GMF
 - diffusion breaks down around the knee

- 3

Trajectory approach:

• use model for Galactic magnetic field

[Jansson, Farrar '12]

• calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.

3

- A - E - N

< A > < E

Trajectory approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- + includes all info of current GMF models
- + valid at all energies
- numerically expansive

[Jansson, Farrar '12]

3

Trajectory approach:

- use model for Galactic magnetic field
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- + includes all info of current GMF models
- + valid at all energies
- numerically expansive
- 2 methods used:
 - backward propagation à la Karakula
 - forward propagation for single sources

[Jansson, Farrar '12]

KIT, 23. Sep. '15 5 / 16

Michael Kachelrieß (NTNU Trondheim)

Anisotropy for Galactic sources [Giacinti et al. '11]

• Galactic sources in cylinder $z_{\rm max} < 200-500\,{\rm pc}$ and $r_{\rm max} < 15-20\,{\rm kpc}$

3

< 回 > < 三 > < 三 >

Anisotropy for Galactic sources [Giacinti et al. '11]

- Galactic sources in cylinder $z_{\rm max} < 200-500\,{\rm pc}$ and $r_{\rm max} < 15-20\,{\rm kpc}$
- backtrace $N=10^4$ anti-particles injected with random direction \hat{r} from Earth

Anisotropy for Galactic sources [Giacinti et al. '11]

- Galactic sources in cylinder $z_{\rm max} < 200-500\,{\rm pc}$ and $r_{\rm max} < 15-20\,{\rm kpc}$
- $\bullet\,$ backtrace $N=10^4$ anti-particles injected with random direction $\hat{\pmb{r}}\,$ from Earth
- weight = path length in the source region

Anisotropy for Galactic sources [Giacinti et al. '11]

- Galactic sources in cylinder $z_{\rm max} < 200 500 \, {\rm pc}$ and $r_{\rm max} < 15 - 20 \, \rm kpc$
- backtrace $N = 10^4$ anti-particles injected with random direction \hat{r} from Earth
- weight = path length in the source region
- dipole $d = 3N^{-1} \sum_i w_i \hat{r}_i$

< 回 > < 回 > < 回 >

Anisotropy of protons at $E = 10^{18} \text{ eV} - \text{Kolmogorov}$

• protons excluded for all reasonable parameters

Anisotropy of protons at $E = 10^{18} \text{ eV} - \text{Kraichnan}$

- protons excluded for all reasonable parameters
- \Rightarrow measuring protons at $E=10^{18}\,{
 m eV}$ means fixing transition energy

Updated PAO results:

- first 2-dim. analysis
- repeat Giacinti et al. analysis with more statistics:

Knee from CR escape: dipole anisotropy

Michael Kachelrieß (NTNU Trondheim)

Knee from CR escape: dipole anisotropy

- assumes $D(E) \propto 1/X(E)$
- phase changes $10^{15}-10^{18}\,\mathrm{eV}.$

Anisotropy of a single source

• if only turbulent field:

diffusion = random walk = free quantum particle

• number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

10 / 16

• what happens for general fields?

Anisotropy of a single source: only turbulent field

Anisotropy of a single source: plus regular

Anisotropy of a single source:

• regular field changes $n(\boldsymbol{x})$, but keeps it Gaussian

 \Rightarrow no change in δ

Anisotropy of a single source:

Single source: other signatures

• 2 Myr SN explains anomalous 60 Fe sediments

[Ellis+ '96]

A 🖓 h

3

Single source: other signatures

- ullet 2 Myr SN explains anomalous 60 Fe sediments
- secondaries:
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age $\Rightarrow \bar{p}$ flux is predicted
 - ▶ e⁺ flux is predicted
 - \blacktriangleright relative ratio of \bar{p} and e^+ depends only on their Z factors

通 ト イヨ ト イヨト

- 31

13 / 16

single source

Single source: other signatures

- 2 Myr SN explains anomalous ⁶⁰Fe sediments
- secondaries:
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age $\Rightarrow \bar{p}$ flux is predicted
 - ▶ e⁺ flux is predicted
 - \blacktriangleright relative ratio of \bar{p} and e^+ depends only on their Z factors
- may responsible for different slopes of local p and nuclei fluxes

通 ト イヨ ト イヨト

[Ellis+ '96]

Single source: proton flux

A⊒ ► < 3

Single source: positrons

[[]MK, Neronov, Semikoz '15]

Single source: antiprotons

[[]MK, Neronov, Semikoz '15]

Conclusions

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- plateau of δ points to dominance of single source
- Single source: antimatter
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - $\blacktriangleright\,$ consistent with $^{60}{\rm Fe}$ and $\delta\,$
- Iocal geometry of GMF is important

Conclusions

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- \blacktriangleright plateau of δ points to dominance of single source

Single source: antimatter

- consistent explanation of p, \bar{p} and e^+ fluxes
- consistent with 60 Fe and δ
- Iocal geometry of GMF is important

- Single source: anisotropy
 - dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - \blacktriangleright plateau of δ points to dominance of single source
- Single source: antimatter
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - $\blacktriangleright\,$ consistent with $^{60}{\rm Fe}$ and $\delta\,$
- Iocal geometry of GMF is important