

3D Ultrasound Computer Tomography for Breast Cancer Diagnosis

N. V. Ruiter, M. Zapf, T. Hopp and H. Gemmeke

INSTITUTE FOR DATA PROCESSING AND ELECTRONICS

Breast cancer

 Most common cancer of women in western world (every 10th woman)

WHO cancer statistics 2012 (GLOBOCAN 2012)

Challenge: Early diagnosis

What is USCT?

Basic idea

 Surround object with (unfocused) ultrasound transducers in a fixed setup

Breast imaging in fixed setup

Diagnostic value

- Reproducible 3D images with ultrasound
- Images three modalities concurrently:
 - Reflection High quality "B-scans"
 - Speed of sound and attenuation Quantitative information

Simplified from Greenleaf et al., 1981

19.02.2016

The beginnings

First attenuation imaging (Dussik, 1946): Not so successful imaging of brain ventricles

First "USCT" device (Holmes et al., 1954): Slice image of the neck, compounding device

KIT 3D USCT

How does it work? Ultrasound and soft tissue

Wave equation for inhomogeneous water like materials:

$$\nabla^{2} p(\vec{x}) + k_{0}^{2} \left(\sqrt{\frac{K_{0}}{\rho_{0}}} \sqrt{\frac{\rho(\vec{x})}{K(\vec{x})}} + i \frac{\mu(\vec{x})}{k_{0}} \right)^{2} p(\vec{x}) - \frac{1}{\rho(\vec{x})} \nabla \rho(\vec{x}) \nabla p(\vec{x}) = 0$$

- Three physical properties influence wave propagation:
 - Density ρ , compressibility K and absorption μ
- Typically reconstructed in USCT:
 - qualitative acoustical impedance $Z = \rho c$,
 - speed of sound $c = \sqrt{\frac{K}{\rho}}$,
 - **attenuation** $\alpha = \mu + \mu_s$

2D simulation of interaction with point scatterers

How does it work? Data acquisition

How does it work? Ultrasound transducers

Convert ultrasound (mechanical wave) to electrical signals and vice versa

Reception: Piezoelectric effect

Emission: Inverse piezoelectric effect

Transducer array systems (TAS)

Center frequency (bandwidth)	2.5 MHz (1.5 MHz)
Opening angle	38° at -6dB (± 1.5°)
Structured Piezo composites	0.64 mm²
Emitters / receivers per TAS	4 emitters and 9 receivers

Emitters (red) and receivers (blue) per TAS

Data acquisition system

Number channels	480
AD conversion	12 Bit @ 20 MHz
Memory	80 GB
Measurement time	10 s – 4 min

First Level Trigger Board

Cabling

Listen to USCT data

11 N.V. Ruiter – 3D USCT 19.02.2016

Image reconstruction

Challenges

Clinical study Jena

- Universitätsklinikum Jena (Prof. W. A. Kaiser)
- Aim: Test device in clinical setting
 prepare larger study
- 10 patients, all with suspicious lesions
 - 2 implants
 - 4 cancers
 - Papilloma, fibroadenoma, mastopathy, cyst
- End of clinical trial: September 2014

Prof. Kaiser in Jena

Patient 1: Healthy

Patient 2: Inflammatory carcinoma

19.02.2016

Patient 3: Multicenter carcinoma

3D data

Summary pilot study in Jena

Karlsruhe Institute of Technology

- 3D USCT was applicable in clinical setting (~ 1 patient/h)
- First images very were encouraging
- Speed of sound seem to give best cancer detection
- Mean patient movement: 3 mm
- Breast positioning critical

Major system updates:

- Data acquisition time: 8 min → 4 min
- New patient interface: + 1 cm

USCT in Jena

Image analysis

Clinical study Mannheim

- Universitätsmedizin Mannheim (Prof. S. Schönberg)
- Aims of study
 - Does USCT give comparable diagnoses to MRI?
 - Analyze different lesion types
- 200 patients
- Start: October 2015

USCT in Mannheim

Was Greenleaf right?

Data from Karmanos Cancer Institute

USCT tissue classification in X-ray mammogram

Data from Karmanos Cancer Institute

Summary

- USCT is a new imaging method for at early breast cancer diagnosis
- KIT 3D USCT: first clinically applicable full 3D USCT
- First pilot study successful, second study started

- 3D USCT III:
 - Faster DAQ
 - Optimized image quality

Thank you!

We acknowledge support of this project by Deutsche Forschungsgemeinschaft (DFG)

