Speaker
Description
The NA62 experiment at CERN collected the world's largest dataset of charged kaon decays in 2016-2018, leading to the first measurement of the branching ratio of the ultra-rare K+ --> pi+ nu nu decay, based on 20 candidates.
The radiative kaon decay K+ → pi0e+vg (Ke3g) was studied with a data sample of O(100k) Ke3g candidates with sub-percent background contaminations recorded in 2017-2018. The most precise measurements of the branching ratio and of T-asymmetry are achieved.
An analysis of the flavour-changing neutral current K+ -> pi+ mu+ mu- decay, based on about 27k signal events with negligible background contamination collected in 2017 and 2018 with a dedicated pre-scaled di-muon trigger, leads to the most precise determination of the branching ratio and of the form factor.
New preliminary results are obtained from an analysis of the K+ -> pi+ gamma gamma decay using data collected in 2016—2018 with a minimum-bias trigger. The sample, about 15 times larger than the previous largest one, leads to an unprecedented sensitivity. This analysis can be naturally extended to search for the K+ -> pi+ a, a -> gamma gamma process, where a is a short-lived axion-like particle.
An overview of the latest NA62 results and the future prospect of the experiment are presented.
The first observation of the decay K± → π0 π0 μ± ν (K00µ4) by the NA48/2 experiment at the CERN and the preliminary measurement of the branching ratio are also presented. The result is converted into a first measurement of the R form factor in Kl4 decays and compared with the prediction from 1-loop Chiral Perturbation Theory.