We welcome you to the University of Mannheim for the 9th bwHPC-Symposium!
In recent years, users have been asking more and more for support with large-scale machine learning applications leading to a focus on memory and GPU computation. In this talk I argue that the next big thing will be the combination of machine learning and simulation and discuss a number of applications based on this combination and the computational challenges that result from this combination.
Today, research data is often stored in many different places, difficult to find and only available for a limited time. Base4NFDI as a joint initiative of all consortia of the German National Research Data Infrastructure (NFDI) aims to create the basis for better findability, accessibility, interoperability and reusability of research data. For this purpose, common, technical services are...
The presentation outlines the current status of the user support project bwHPC-S5 for HPC, DIC and LS2DM in the state of Baden-Württemberg, Germany.
The state-wide project bwHPC-S5 provides federated support for the bwHPC users and coordinates all associated provisions, including development of policies and services. As the connecting body between scientists and HPC systems, bwHPC-S5 has...
Recycling of waste represents one of the major goals to close the carbon cycle and to achieve circular economy concepts. The thermal conversion of plastic waste via pyrolysis to base chemicals for the production of new plastics represents one of the key technologies.
The talk provides an overview of fundamental research carried out at the Institute for Technical Chemistry (ITC) at KIT, with...
Friction and lubrication are inherent multiscale problems, particularly when the gap between contacting bodies is on the order of molecular interaction length scales, such as in the boundary lubrication regime. Modelling lubrication across scales beyond purely sequential approaches has so far remained elusive. In this talk, I will present a reformulation of the classical lubrication equations...
The vast amount of data produced at the Large Hadron Collider (LHC), the largest particle collider in the world, is used to study the most fundamental building blocks of nature. Global analyses using LHC data provide ways to constrain signs of new physics within these measurements. In this talk, we present an overview of the uses of the NEMO cluster in these analyses, utilizing its strength to...
The Large Hadron Collider (LHC), located at CERN in Geneva, stands as one of the most monumental scientific experiments in human history. This remarkable machine facilitates approximately 40 million particle collisions every second, generating an astronomical amount of data. Even with rigorous filtering of collision events, the data retained for subsequent analysis remains staggering in...
For several years, we have been dynamically and opportunistically integrating the computing resources of the HPC cluster NEMO into the HTC cluster ATLAS-BFG using the COBalD/TARDIS software. To increase usage efficiency, we allow the integrated resources to be shared between the various High Energy Physics (HEP) research groups in Freiburg. However, resource sharing also requires accounting....
Battery performance is strongly influenced by physical and electrochemical processes occurring on the pore scale. Thus, especially the microstructure of battery components is important. Therefore, battery research is highly interested in understanding the interdependence of both. Our work goes into this direction applying computational methods that are used in the field of battery research...
Molecular dynamics (MD) plays a crucial role in the field of atomistic simulations for calculating thermodynamic and kinetic quantities of molecules and materials.
Traditionally descriptions of atomic interactions either rely on classical or quantum mechanical models which are limited in accuracy and simulation speed respectively.
Machine learning potentials (MLPs) have emerged as a useful...
Galaxy is a scientific workflow and data analysis platform transforming data-driven research. It is focused on creating an open infrastructure for computational research that is robust, scalable, and integrated, allowing for federated computational infrastructures and democratization of research data analysis. Galaxy's efficient web-based, intuitive user interface embedded with thousands of...