Nov 24 – 27, 2022
Karlsruhe Institute of Technology
Europe/Berlin timezone

Highly crystalline $\text{In}_2\text{S}_3$ thin films epitaxially grown on sapphire substrates: A potential candidate for intermediate band solar cells

Nov 25, 2022, 4:45 PM
15m
FTU Aula (KIT Campus North)

FTU Aula

KIT Campus North

KIT Campus map: https://www.kit.edu/campusplan/ Building: 101 Room: 130 Address: Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Coordinates: 49.09139, 8.42756

Speaker

Ms Tanja Jawinski (Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik)

Description

The Shockley Queisser limit of single junction solar cells can be overcome by introducing an intermediate band (IB) in wide band gap materials. Thus thermalization losses can be reduced [1]. Furthermore sub-bandgap photons can be absorped by valence band to IB and IB to conduction band transitions. According to theoretical calculations $\text{In}_2\text{S}_3$ hyper-doped with vanadium is a suitable candidate to realize such an IB solar cell [2].

We grew $\beta$-$\text{In}_2\text{S}_3$ thin films by physical co-evaporation of the elements on glass and on a-, c-, m-, and r-plane sapphire substrates. The deposition parameters were varied in a wide range to optimize the structural properties of the films. At appropriate deposition parameters (103)-orientation of $\beta$-phase $\text{In}_2\text{S}_3$ was enhanced. Highest crystallinity and smoothest surfaces could be realized for samples epitaxially grown on a-sapphire substrates.
Electrical characterization reveals a strong persistant photoconductivity. To investigate the photovoltaic response we fabricate $pn$-heterojunctions using amorphous $p$-type zinc-cobalt-oxide.

Further we grew $\text{In}_2\text{S}_3\text{:V}$ on sapphire substrates using a combinatorial approach to cover within a single deposition process a wide range of doping concentrations reaching from $1.1 \, \text{at.}\%$ to $11.4 \, \text{at.}\%$ vanadium.
For samples with doping concentrations above a critical concentration of $3.2 \, \text{at.}\%$ vanadium we find an unusual temperature dependence in mobility and charge carrier concentration, which might give evidence to the formation of an IB.

[1] Luque and Martí, Phys. Rev. Lett., 1997, 78, 5014.

[2] Palacios et al., Phys. Rev. Lett., 2008, 101, 046403.

Category Solid State (Experiment)

Primary authors

Ms Tanja Jawinski (Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik) Dr Chris Sturm (Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik) Mr Roland Clausing (Martin-Luther-Universität Halle-Wittenberg, Institut für Physik) Dr Heiko Kempa (Martin-Luther-Universität Halle-Wittenberg, Institut für Physik) Mr Stefan Lange (Fraunhofer-Center für Silizium Photovoltaik CSP) Prof. Susanne Selle (Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS) Prof. Roland Scheer (Martin-Luther-Universität Halle-Wittenberg, Institut für Physik) Prof. Marius Grundmann (Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik) Dr Holger von Wenckstern (Universität Leipzig, Felix-Bloch-Institut für Festkörperphysik)

Presentation materials

There are no materials yet.