Oct 14 – 15, 2019
Integrative Biosciences Center
America/Detroit timezone

3D Wave-Equation-Based Finite-Frequency Tomography for Ultrasound Computed Tomography

Not scheduled
15m
Integrative Biosciences Center

Integrative Biosciences Center

6135 Woodward Avenue Detroit, MI 48202 USA
Poster Poster Session Poster Session

Description

Ultrasound Computed Tomography (USCT) has great potential for 3D quantitative imaging of acoustic breast tissue properties. Typical devices include high-frequency transducers, which makes tomography techniques based on numerical wave propagation simulations computationally challenging, especially in 3D. Therefore, despite the finite-frequency nature of ultrasonic waves, ray-theoretical approaches to transmission tomography are still widely used.

This work introduces finite-frequency traveltime tomography to medical ultrasound. In addition to being computationally tractable for 3D imaging at high frequencies, the method has two main advantages: (1) It correctly accounts for the frequency dependence and volumetric sensitivity of traveltime measurements, which are related to off-ray-path scattering and diffraction. (2) It naturally enables out-of-plane imaging and the construction of 3D images from 2D slice-by-slice acquisition systems.

Our method rests on the availability of calibration data in water, used to linearize the forward problem and to provide analytical expressions of cross-correlation traveltime sensitivity. As a consequence of the finite frequency content, sensitivity is distributed in multiple Fresnel volumes, thereby providing out-of-plane sensitivity. To improve computational efficiency, we develop a memory-efficient implementation by encoding the Jacobian operator with a 1D parameterization, which allows us to extend the method to large-scale domains. We validate our tomographic approach using lab measurements collected with a 2D setup of transducers and using a cylindrically symmetric phantom. We then demonstrate its applicability for 3D reconstructions by simulating a slice-by-slice acquisition systems using the same dataset. The result is shown in the Figure, where we also analyse the vertical resolution using estimations of point-spread functions calculated from Hessian-vector products. We conclude showing that the vertical resolution could be controlled by appropriate designs of the acquisition system.

Primary author

Naiara Korta Martiartu

Co-authors

Dr Christian Boehm Prof. Andreas Fichtner

Presentation materials

There are no materials yet.